科技部補助產學技術聯盟合作計畫完整期中進度報告

計畫名稱：PM2.5及奈米微粒監測與控制技術聯盟(2/3)
計畫編號：MOST 106-2622-8-009-004-TE4
執行期間：106年02月01日至107年01月31日
執行單位：國立交通大學環境工程研究所
計畫主持人：蔡春進
共同主持人：張木彬、黃政雄、程裕祥、林育旨
聯盟顧問：陳仁焜、陳裕政、王琳麒、林文印、楊錫賢、戴榮賦、陳王琨、楊振成
計畫參與人員：許雅靖、周侑霖、賴思穎、翁憲邑、繆其軒、陳宥廷、徐晏貞、阮維達、鄭明敏

本完整報告處理方式：

1. 公開方式：(請擇一勾選)
 - □ 不予公開
 - □ 立即公開
 - □ 1年後公開
 ■ 2年後公開

2. 本計畫是否有嚴重損及公共利益之發現：■ 否 □ 是

3. 本報告是否建議提供政府單位參考：■ 否 □ 是，（請列舉提供參考之單位；本部不經審議，依勾選逕予轉送。）

中華民國106年10月31日
摘要
1、計畫中文摘要（5百字以內）

本聯盟致力於協助企業會員在PM$_{2.5}$及奈米微粒監控技術的諮詢、開發及應用，提供教育訓練及產官學研交流平台。聯盟為了提高與會員的互動，促進產官學研交流及吸引會員加入，已架設了網頁平台。本聯盟的第2年計畫至10月31日止，會員總數已達29家(含企業會員28家、研究型法人會員1家)；在第2年期間舉辦了4場推廣聯盟技術研討會、1場會員大會、技術服務26次、44次以上的廠商專業諮詢及現地指導、1項科技部產學合作案、1項衍生計畫、1項先期技術移轉、獲得2項專利、提出3項專利申請、並已發表3篇SCI論文。聯盟計畫第2年至10月31日止的總收入為3,945,205元，含會員費500,000元，技術服務費2,141,525元、先期技術移轉費86,280元、科技部產學合作案及衍生計畫費1,217,400元。

本聯盟的技術服務績效在業界廣受好評，因此許多廠商持續與聯盟接洽，希望在環境、污染源及室內PM$_{2.5}$監測與控制的產品及技術研發有所進展。另外為促進產官學研更進一步的緊密合作，本聯盟已獲得47名企業廠商及專家學者的同意，籌備成立「台灣PM$_{2.5}$的監測與控制技術產業發展協會」，並於今年9月將協會籌備案送內政部審查，預計年底前正式成立協會，希望將來更可進一步協助我國解決空污及PM$_{2.5}$問題，為我國的環保產業帶來更多經濟效益。

關鍵詞：產學聯盟, PM$_{2.5}$控制技術, PM$_{2.5}$監測技術, 空氣污染控制

2、計畫英文摘要（5百字以內）

This Consortium is devoted to help cooperate members with consultation, development and application in the monitoring and control technologies of PM$_{2.5}$ and nanoparticles, provide a platform for educational training and exchanges among industry-government-research-academia sectors. The Consortium has set up a webpage to interact with members, promote exchanges and attract cooperate members to join. In the second year, the total number of members has reached 29 (including 28 corporate members and 1 research-oriented institute) until Oct 31, 2017. The Consortium has held 4 technical workshops and 1 membership general meeting, 26 technical services, offered over 44 professional consultations and on-site advices, has gained 1 MOST Industry-University Collaboration Project, 1 derivative project, 1 preliminary technology transfer, 2 granted patents, 3 pending patents, and has also published 3 SCI papers. The total income of the Consortium is 3,945,205 NT$ including 500,000 NT$ membership fee, 2,141,525 NT$ technical service charge, 86,280 NT$ technology transfer fee, and 1,217,400 NT$ derivative project.

The Consortium is well commended by the industry for its excellent technical services. Hence, many companies keep contacting with the Consortium in a hope to develop new products and technologies in PM$_{2.5}$ monitoring and control in the ambient environment, pollution sources and indoor air. To further strengthen the cooperation among industry-government-research-academia sectors, the Consortium intends to set up the “Industrial Association for the Technology Development of PM$_{2.5}$ Monitoring and Control” supported by 47 corporate members, experts and scholars. The application form was sent to the Ministry of Internal Affairs for review in September this year and the Association is expected to be established officially by the end of the year. It is hope that the Association can help our country resolve the air pollution and PM$_{2.5}$ problems, and also generate more economic benefits for the environmental industry.
Keywords: industrial-academia consortium, PM$_{2.5}$ control technology, PM$_{2.5}$ monitoring technology, air pollution control
目錄

摘要 .. I

目錄 .. III

圖目錄 ... V

表目錄 ... VI

1. 前言 .. 1

1.1 環境和煙道之 PM2.5 及前趨氣體檢測技術 ... 1

1.1.1 同時採集酸鹼性氣體及微粒的固氣分離器(蔡春進/黃政雄) 1

1.1.2 PM2.5 及前趨酸鹼氣體自動檢測技術 (蔡春進) 1

1.1.3 微粒分徑採樣技術(黃政雄/蔡春進) ... 1

1.1.4 PM2.5 檢測技術(蔡春進/黃政雄) ... 2

1.2 PM2.5 及前趨氣體控制技術 .. 2

1.2.1 同時去除大微量微粒及氣狀空氣污染物的高效能文氏洗滌器(蔡春進) 2

1.2.2 高效率酸鹼洗滌技術(蔡春進) ... 2

1.2.3 溼式靜電集塵技術(蔡春進) ... 2

1.2.4 多層活性碳流動床吸附系統(張木彬) ... 2

1.2.5 新穎觸媒濾袋的戴奧辛防制技術(張木彬) 2

1.2.6 觸媒應用於戴奧辛、NOx, VOC 及多重污染物的控制技術(張木彬) 2

1.2.7 揮發性有機廢氣污染防制設備(林育旨) 2

1.2.8 廢氣處理設備尾氣白煙抑制(林育旨) ... 2

1.2.9 節能空氣污染防制技術(林育旨) ... 2

1.3 室內空氣品質技術服務平台 .. 3

1.3.1 室內空氣品質技術服務(程裕祥) .. 3

1.4 室內空氣品質控制技術 ... 4

1.4.1 低臭氧靜電集塵控制技術(蔡春進) ... 4

1.4.2 全天候長效型二污除臭濾網技術(林育旨) 4

1.5 持有技術之應用性及符合企業需求程度 ... 4

1.5.1 「環境及煙道之 PM2.5 及前趨氣體檢測技術」 5

1.5.2 「PM2.5 及前趨氣體控制技術」 ... 5

1.5.3 「室內空氣品質技術服務平台」 ... 6

1.5.4 「室內空氣品質控制技術」 .. 6

1.6 對聯盟會員之服務及輔導規劃 ... 7

1.6.1 聯盟組織架構 ... 7

1.6.2 服務及輔導規劃 .. 9
2、報告表格

2.1 成果摘要綜整表(第2年)...10
2.2 產學小聯盟營運收支報告表(第2年)..20

3、報告內容...23

3.1 聯盟成員...23
3.2 聯盟收入...29
3.3 聯盟推廣活動及執行成果說明：...36
 3.3.1 聯盟網頁..36
 3.3.2 聯盟技術研發成果...49
3.4 聯盟推廣活動及執行成果說明：...63

4、聯盟成員契約書...73

4.1 聯盟成員清單...73
4.2 聯盟成員契約書...74

5、前一年度審查意見回覆說明..79

附錄...80
<table>
<thead>
<tr>
<th>圖</th>
<th>目錄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 室內空氣品質技術服務平台 .. 3</td>
</tr>
<tr>
<td>1.2</td>
<td>IAQ 管理關鍵整合技術 .. 4</td>
</tr>
<tr>
<td>1.3</td>
<td>『PM_2.5 及奈米微粒監測與控制技術聯盟』的架構 5</td>
</tr>
<tr>
<td>1.4</td>
<td>『PM_2.5 及奈米微粒監測與控制技術聯盟』的人員分組 8</td>
</tr>
<tr>
<td>3.1</td>
<td>PM_2.5 及奈米微粒監測與控制技術聯盟網頁首頁 38</td>
</tr>
<tr>
<td>3.2</td>
<td>最新消息專區 .. 39</td>
</tr>
<tr>
<td>3.3</td>
<td>聯盟簡介專區-聯盟組織介紹 .. 41</td>
</tr>
<tr>
<td>3.4</td>
<td>聯盟簡介專區-聯盟會員介紹 ... 43</td>
</tr>
<tr>
<td>3.5</td>
<td>聯盟成果專區 .. 44</td>
</tr>
<tr>
<td>3.6</td>
<td>活動訊息及報名專區 .. 45</td>
</tr>
<tr>
<td>3.7</td>
<td>服務項目專區 .. 47</td>
</tr>
<tr>
<td>3.8</td>
<td>出版品專區 .. 48</td>
</tr>
<tr>
<td>3.9</td>
<td>本技術的靜電及過濾複合式 PM_2.5 控制設備。設計一的示意圖(1)及上視圖(2)，及設計二的示意圖(3)及上視圖(4)。 50</td>
</tr>
<tr>
<td>3.10</td>
<td>複合式 PM_2.5 收集設備先期技術授權合約 .. 53</td>
</tr>
<tr>
<td>3.11</td>
<td>SDEP(A)示意圖(B)外觀(C)氣膠入口處的剖面圖 54</td>
</tr>
<tr>
<td>3.12</td>
<td>半乾式靜電旋風採樣器的專利證書 .. 55</td>
</tr>
<tr>
<td>3.13</td>
<td>本發明的低臭氧空氣清淨機結構圖 .. 56</td>
</tr>
<tr>
<td>3.14</td>
<td>低臭氧高效率空氣清淨機示意圖 .. 56</td>
</tr>
<tr>
<td>3.15</td>
<td>低臭氧高效率室內空氣清淨機的測試系統圖 57</td>
</tr>
<tr>
<td>3.16</td>
<td>本發明的慣性衝擊器構造 ... 58</td>
</tr>
<tr>
<td>3.17</td>
<td>可防止採樣誤差的高效率靜電微粒液相採樣器 59</td>
</tr>
<tr>
<td>3.18</td>
<td>高效率直立式酸鹼洗滌塔 ... 61</td>
</tr>
<tr>
<td>3.19</td>
<td>高效率臥式洗滌塔 .. 61</td>
</tr>
<tr>
<td>3.20</td>
<td>高效率臥式洗滌塔報價單 ... 62</td>
</tr>
<tr>
<td>3.21</td>
<td>美國橡樹嶺國家實驗研究院之環境氣膠研習會活動議程 63</td>
</tr>
<tr>
<td>3.22</td>
<td>美國橡樹嶺國家實驗研究院之環境氣膠研習會活動照片 64</td>
</tr>
<tr>
<td>3.23</td>
<td>PM_2.5 及金屬檢測研習會議程 ... 65</td>
</tr>
<tr>
<td>3.24</td>
<td>PM_2.5 及金屬檢測研習會活動照片 .. 66</td>
</tr>
<tr>
<td>3.25</td>
<td>工業 VOCs 及 PM_2.5 排放控制技術研習會 67</td>
</tr>
<tr>
<td>3.26</td>
<td>工業 VOCs 及 PM_2.5 排放控制技術研習會活動照片 68</td>
</tr>
<tr>
<td>3.27</td>
<td>PM_2.5 的過濾技術研習會議程 .. 69</td>
</tr>
<tr>
<td>3.28</td>
<td>PM_2.5 的過濾技術研習會活動照片 .. 70</td>
</tr>
<tr>
<td>3.29</td>
<td>2017 聯盟會員大會活動時程表 .. 71</td>
</tr>
<tr>
<td>3.30</td>
<td>2017 聯盟會員大會活動照片 .. 72</td>
</tr>
</tbody>
</table>
表目錄
表 3.1 106.02.01-106.10.31 PM2.5 聯盟具體工作與聯盟收入詳細說明表30
表 3.2 PM$_{2.5}$ 去除效率測試結果 ...57
表 3.3 臭氧濃度值測試結果 ...57
表 3.4 CADR 值測試結果 ...57
表 3.5 力晶科技股份有限公司高效率酸鹼洗滌塔歷月氣體檢測數據(2016.08-2017.08)60
1、前言

細懸浮微粒(PM_{2.5})對人體健康及能見度有不良的影響，世界衛生組織(WHO, World Health Organization)的國際癌症研究機構(IARC, International Agency for Research on Cancer)已將室外空氣污染歸為第一級致癌物，其中以PM_{2.5}之危害最受人注意。為保障國民健康，我國環保署於民國101年增訂了PM_{2.5}空氣品質標準：24小時平均值為35 µg/m^3, 年平均值為15 µg/m^3, 並希望於民國109年達到年平均值15 µg/m^3以下之目標。然根據民國103年我國環保署的空氣品質監測報告，我國西部主要都會區的PM_{2.5}年平均值大都在18.1至34.7 µg/m^3之間，難以在民國109年達到目標，離美國的年平均12µg/m^3及世界衛生組織的10 µg/m^3標準也仍有一段距離。

PM_{2.5}的來源複雜，有直接從污染源排放的原生性PM_{2.5}，與空氣污染物如硫氧化物(SO_x)、氮氧化物(NO_x)、揮發性有機物(VOCs)與氣等前驅氣態污染物，在大氣中經化學反應形成的衍生性PM_{2.5}，因此要改善我國PM_{2.5}空氣品質，必需要作好原生性PM_{2.5}及前驅氣態污染物的監測及控制工作。我國針對PM、NO_x及SO_x之排放標準隨著不同的燃料、污染物特性及操作規模分別於「固定污染源空氣污染物排放標準」、「電力設施空氣污染物排放標準」、「廢棄物焚化爐空氣污染物排放標準」、「廢棄物焚化爐戴奧辛管制及排放標準」及「固定污染源戴奧辛排放標準」等法規進行管制，部份法規也規定了鉛、汞等重金屬的排放濃度。在我國的“特殊性工業區緩衝地帶及空氣品質監測設施設置標準”規定，特殊性工業類別(如金屬冶煉業、石油化學工業、電力業、半導體或光電業等)，應監測懸浮微粒(PM_{10})中之鎳、砷、鉛、錳、鎳及總懸浮微粒(TSP)中之六價鉻(Cr^{6+})；半導體及光電業應監測無機酸(包含氯化酸、硝酸、磷酸及硫酸)、醋酸、氨及氰化物。在多環芳香烴化合物(Polycyclic aromatic hydrocarbons, PAHs)的管制上，我國於「固定污染源空氣污染物排放標準」僅管制16種PAHs中的萘(Naphthalene)。但以上的有害毒性空氣污染物排放標準才開始在推行中，懸浮微粒至今仍無PM_{2.5}的排放標準，排放檢測仍以手動為主，因此難以作好管制工作。我國在自動監測及排放控制工作上仍有相當大的努力空間。

除大氣環境外，室內空氣品質的維護也十分重要，因一般民眾每天約有80~90%的時間處於家中、辦公室或其他建築物內，身心健康、工作品質及效率直接受到室內空氣品質的影響。為有效改進室內空氣品質及維護國人身體健康，我國環保署於民國101年訂定了室內空氣品質標準，其中PM_{10}及PM_{2.5}的二十四小時值分別為75及35 µg/m^3。為因應室內空品質法，我國的室內空品質檢測業及空氣清淨機廠商有很大的商機，值得政府部門重視，也是本聯盟列為重點工作的原因。

本聯盟由交通大學、中央大學、明志科技大學及元培醫事科技大學等四校的5個教授及副教授所組成，目的在於協助聯盟的廠商提升PM_{2.5}、前趨氣體及室內空品質的監測及控制技術，並發展相關的技術、儀器及設備。本聯盟以過去在科技部支持下累積的10-25年研究成果服務聯盟會員，已掌握的技術分為“環境和煙道之PM_{2.5}及前趨氣體檢測技術”、“PM_{2.5}及前趨氣體控制技術”、“室內空氣品質技術服務平台”及“室內空氣品質控制技術”等四類，分別說明如下：

1.1 環境和煙道之PM_{2.5}及前趨氣體檢測技術

1.1.1 同時採集酸鹼性氣體及微粒的固氣分離器(蔡春進/黃政雄)

已完成新型多孔金屬片固氣分離器(porous metal denuder)的研發，它的體積小且偵測下限低，可同時採集空氣中的微粒物質及酸鹼氣體，可使用於周界空氣品質監測，及半導體洗滌塔的去除效率評估及改善工作。

1.1.2 PM_{2.5}及前趨氣體自動檢測技術(蔡春進)

以高度親水的四孔玻璃平板塗敷奈米TiO_2凝膠製成濕式平板氣體分離器(Parallel-Plate Wet Denuder, PPWD)，結合離子層析儀並使用平板間的氣體吸收理論設計成一套自動酸鹼氣體監測器，比市面上現有用親水薄膜式吸收技術製成的監測器優異，污染物背景值低、水膜均勻且無需更換吸收薄膜，目前已結合濕式靜電收集器，進一步發展成細微粒及前趨體氣體的監測器。

1.1.3 微粒分徑採樣技術(黃政雄/蔡春進)

已開發出低損失的多孔微粒慣性衝擊器(NMCI, NCTU micro-orifice cascade impactor, 流量30 L/min, 粒徑範圍56 nm 至18 µm, 含10階)，及個人奈米微粒採樣器(Personal Nanoparticle...
1.1.4 PM_{2.5} 檢測技術（蔡春進/黃政雄）

本研究環保署測站的貝他計因使用玻璃濾紙而使得 PM_{2.5} 測值高估，而 TEOM-FDMS PM_{2.5}監測儀校正了半揮發性微粒之揮發損失而較為準確。PM_{2.5} 採樣器可使用不同篩的組合，以降低微粒揮發損失後而提高 PM_{2.5} 測值的準確度。研究顯示 PM_{2.5}監測器的測值設定及大氣環境因子對影響 PM_{2.5}監測器測值，PM_{2.5} 監測器的監測房湿度設定值須在一定範圍內操作。

1.2 PM_{2.5} 及前趨氣體控制技術

1.2.1 同時去除次微米微粒及氣態空氣污染物的高效能文氏洗滌器（蔡春進）

以高溫蒸氣混合常溫廢氣，或高溫廢氣混合常溫水霧以產生微粒核凝現象，提高了文氏洗滌器對次微米微粒的去除效率。

1.2.2 高效率酸鹼洗滌技術（蔡春進）

完成一個高效率水溶性氣體的平行平板式滷式洗滌塔（PPWS, parallel-plate wet scrubber）的研究，及利用吸水性聚丙烯纖維布（PP）製成蜂巢狀的洗滌塔，在半導體廠的機場測試結果顯示去除效率均比填充洗滌塔高很多，且壓損很低。

1.2.3 溼式靜電集塵技術（蔡春進）

利用繆式靜電器結合靜電集塵原理製成濕式靜電旋風器（wet electro-cyclone），可維持微粒收集壁面的清潔，避免微粒的累積而降低收集效率的現象；另外在濕式靜電集塵器的入口端利用高溫蒸氣使奈米微粒成長再以濕式靜電集塵器去除，大幅增加了奈米微米的去除效果。

1.2.4 多層活性碳流動床吸附系統（張木彬）

應用高硬度球狀活性碳（Bead-shaped activated carbon）作為吸附材料，利用其高硬度、易流動、低磨擦等特性開發出多層流動床吸附系統，可有效控制戴奧辛的排放濃度。

1.2.5 新穎觸媒濾袋的戴奧辛防制技術（張木彬）

現有之濾袋技術加入一層觸媒層，可同時達到去除粉塵與破壞氣相戴奧辛之功效，觸媒濾袋對都市廢棄物焚化爐排氣中戴奧辛之去除效率隨著操作溫度的提昇而增加，相較於傳統之 ACI+BF 技術，觸媒濾袋可有效降低戴奧辛總排放量。

1.2.6 觸媒應用於戴奧辛、NOx, VOC 及多重污染物的控制技術（張木彬）

新穎低溫觸媒可同步去除 NOx、戴奧辛及轉化元素態汞。添加 Ru 的 V₂O₅/TiO₂ 試驗結果指出在 150℃ 的低溫條件下，即可達到 88% 以上的汞氧化效率；在 200℃ 時對戴奧辛的去除效率亦達 95% 以上。另外張教授的研究團隊製備 La₂NiO₄、LaSrNiO₄、La_{0.7}Ce_{0.3}SrNiO₄ 等 perovskite oxide 型觸媒，結果顯示 La_{0.7}Ce_{0.3}SrNiO₄ 觸媒對於 NO 之分解率為 99%；非熱電漿改質觸媒之結果顯示經非熱電漿處理後之觸媒於含氧之條件下觸媒不易毒化，對氧氣有較高的容忍力。

1.2.7 指定性有機廢氣污染防制設備（林育旨）

協助廠商針對廢氣溫度變化及各操作參數如轉輪轉速、濃縮倍率與再生溫度等，於經濟條件下達到系統穩定之最佳處理效率。

1.2.8 增氣處理設備尾氣白煙抑制（林育旨）

藉由旁通風管之設置調整氣流於風管流域之層流與紊流型態，以使該除霧器之內部更有效地去除該氣體中之水蒸及霧滴，降低白煙排放之可能。

1.2.9 節能空氣污染防制技術（林育旨）
利用導電發熱材料為擔體，並在其上塗覆沸石、氧化鋁或活性碳等吸附材料，形成電熱脫附吸附轉輪，如此在廢氣處理或再生程序時即可利用電漿或通電發熱達到處理或熱脫附，無需額外搭配加熱裝置；此外，利用蓄熱材料製備脫硝觸媒，並以取得專利之技術建立節能、又可解決 NOx 潔淨技術。

1.3 室內空氣品質技術服務平台

1.3.1 室內空氣品質技術服務(程裕祥)

因應「室內空氣品質管理法」的發展趨勢與衝擊，本聯盟將結合檢測機構、連續監測系統廠商、淨化設備系統廠商及改善工程廠商等，提供各公告場所一個室內空氣品質問題諮詢、教育訓練、污染診斷、儀器檢測及輔導改善的整合性專業技術服務平台，如圖 1.1 所示，以連結公告場所與 IAQ 相關產業兩者之間的互動與交流。除可充分契合環保政策與法令的走向外，以產業技術服務的角色亦可協助被列管場所解決所面臨的法令規範問題。

本平台利用現有高階的直讀式儀器進行室內 PM_{10}、PM_{2.5}、PM_{1.0} 及 PM_{0.1} 質量濃度推估技術開發，及運用低溫捕集-熱脫附及微氫相層析技術，於室內環境中直接測量室內環境空氣中 TVOC 濃度進行測值準確性探討，以建立室內污染物快速且準確的檢測方法。另外將利用已開發的定量模式推估室內污染物長期暴露的健康效應及其風險，並探討室內空氣品質改善前後的健康風險與成本效益分析。最後開發一可量化的室內空氣品質查核表，進行室內環境半定量評估，根據評核結果再利用流體動力學流場模擬室內空間空氣流動的情形，判斷污染物可能累積的原因並提出改善對策。

IAQ 改善與管理的關鍵整合技術如圖 1.2 所示，藉由整合性的 IAQ 改善與管理機制達到預期的管理效果，也可以節省被公告場所資源重複投入而成效不彰的困境。
1.4 室內空氣品質控制技術
1.4.1 低臭氧靜電集塵控制技術(蔡春進)

1.4.2 全天候長效型二汙除臭濾網技術(林育旨)

提供具備吸附、吸收及光催化三項功能機能性除臭濾網，一般除臭濾網，在一般環境條件下可有效去除酸性、鹼性及揮發性有機污染物，於UV A光照下，對於選定臭味標的物質去除效率更有優異成果。

1.5 持有技術之應用性及符合企業需求程度

本聯盟成員運用在科技部專題研究計畫已開發的技術，結合企業及政府的研究資源，和國內研究部門(工業技術研究院, 國家衛生研究院等)及學者專家的專長，提出如圖1.3所示的『PM2.5及奈米微粒監測與控制技術聯盟』架構。由聯盟的會員提出各項技術開發、檢測服務及產品的需求，並與聯盟的主持人及共同主持人在產學合作計畫、技術研發、專利申請、產品開發上共同合作，所需資源部份由會員提供，聯盟的主持人及共同主持人也可和會員共同合作向政府部門提出計畫申請經費補助，工業局的SBIR, CITD計畫，科技部的專題研究計畫及產學合作計畫等。本聯盟主要的產出為企業所需的技術，設備或儀器，目的為加速本國的環保產業昇級。在此架構下，學者在研究進行過程中會考慮到業者的需求。部份業者已具備有相當的空氣污染控制設備及檢測儀器的知識，值得學者學習；企業比較缺乏的是設備的基本學理、先進的儀器設備及前瞻技術的開發，這些是學者專家的強項，可積極的協助企業，也是本聯盟成立的目的。
本聯盟對外提供的技術分為「環境及煙道之PM2.5及前趨氣體檢測技術」、「PM2.5及前趨氣體控制技術」、「室內空氣品質技術服務平台」及「室內空氣品質控制技術」四項。以下針對技術應用性及符合企業需求度說明如下：

1.5.1 「環境及煙道之PM2.5及前趨氣體檢測技術」

我國的環保業者普遍沒有先進的檢測設備和儀器，本聯盟提供以下的技術可協助業者進行環境及煙道之PM2.5及前趨氣體檢測，包括(1)多孔金屬片固器分離器：可以同步採集酸鹼性氣體及微粒質量濃度，並可將微粒進一步作化學分析，了解微粒中的成份，藉此可以協助廠商了解工廠內酸鹼排氣的成份，協助廠商找出製程排放氣體的特性及污染問題。(2)慣性衝擊器：可以將煙道中的微粒按照不同粒徑大小進行分級，可以協助廠商在微粒污染處理上，可以選取到較適當的設備；並可以驗證現有設備的微粒去除效率是否正常。(3)即時微粒監測器：可應用在排放口的微粒濃度連續監測，找到污染的來源及污染時機；應用在無塵室或開放空間時，可以檢測出微粒的洩漏來源；應用在產品開發時，可以協助業者開發微粒去除設備及微粒產生設備，例如傳統藥劑由口服變成噴劑的效率測試、食品加工業及化妝品業使用原物料精煉過程的檢測。(4)自動PM2.5及前趨無機酸鹼監測器：可連續的監測排放微粒的化學成份，找到污染的來源；應用在無塵室或開放空間時，可以檢測出PM2.5及前趨氣體的洩漏來源。(5)PM2.5/PM10空氣粒狀物採樣技術：可測定空氣中PM2.5/PM10之質量濃度平均值，採集的樣品可進行物化分析。

1.5.2 「PM2.5及前趨氣體控制技術」

本聯盟提供了許多的技術供會員使用，可進一步作實廠放大，包括(1)前趨酸鹼氣體洗滌技術：目前市面上使用的洗滌塔對於水溶性不佳之氣體的處理效率相當低，且因為濾材會因為粉塵多而導致阻塞進而壓損變大，耗能又不環保。本聯盟提供高效率酸鹼洗滌技術，可以提高水溶性不佳氣體之吸收效率，並改善粉塵累積造成壓損變大的問題，提高了去除效率、降低排放的濃度後，工廠的周界環境也會隨之改善。(2)溼式靜電集塵技術：目前市面上使用的溼式靜電集塵技術都號稱是溼式的，但實際上卻無法同時達到收集板自清及去除微粒的功能，因此微粒會累積在收集板上，長久使用會造成火災。本聯盟提供溼式靜電集塵技術，可以同時達到收集板自清及去除微粒的功能，大大提高使用靜電的安全性，不會再有因為收集板累積微粒的問題，是業界較易取得的技術。(3)
高效率文氏洗滌器：傳統的文氏洗滌器在處理次微米微粒時的壓損過高，且在處理高濃度與高黏度微粒時會發生粉塵阻塞喉部的現象，使壓損提高，並增加操作成本。本聯盟已開發出一種濕壁型高效率文氏洗滌器，目的在於避免粉塵之阻塞，並提昇高濃度細微粒的處理效率。本技術可應用於半導體或光電業的化學氣相堆積製程（CVD）及餐飲業的油煙廢氣所產生的白煙問題。(4) 前趨揮發性有機廢氣污染控制技術：沸石濃縮轉輪是目前國內高科技產業 （如半導體及 TFT 液晶面板廠）用於控制揮發性有機廢氣的最佳設備，且是符合現行半導體及光電業空污法規之最穩定設備。實場上沸石吸附濃縮轉輪因考量下，不易詳盡了解環境條件及主要操作參數對其系統效率之影響。本聯盟成員已有一套小型沸石轉輪系統，可協助廠家針對進流廢氣可能之溫、濕度變化及各重要操作參數如轉輪轉速、濃縮倍率（吸附氣流/脫附氣流）與再生溫度等，完成所有影響系統去除效率因子探討，協助最佳化操作參數建立。(5) 节能空氣污染防制技術：因考量半導體及光電產業製程大多含有氨化合物，如：NMP、DMF 等含氮物質，會隨著 VOCs 經由污染防制廢氣處理後排放，現行揮發性有機物管末處理多以沸石轉輪搭配焚化處理。不過最終以焚化方式處理含氨 VOCs 時，將面臨燃燒尾氣排放 NOx 問題，雖然高科技產業所排放之 NOx 濃度仍符合法規標準，但為改善整個區域之空氣品質，控制此類 NOx 有其必要性。本聯盟成員利用蓄熱式焚化技術之高熱交換效率原理，改良現行的蓄熱材料，使其具備觸媒還原脫硝能力，發展出一種節能、又可解決 NOx 淨化技術，並建立同時具備脱硝及 VOCs 焚化之高效與節能設備基礎。

1.5.3 「室內空氣品質技術服務平台」
本聯盟提供以下的 IAQ 技術供會員使用，包括 (1) IAQ 現況評估與污染源調查：本聯盟利用層級分析法 (Analytic Hierarchy Process, AHP)、分層採樣設計 (Stratified Sampling, SS) 與計算流體動力學 (Computational Fluid Dynamics, CFD) 的基本理學，同時結合影響室內空氣品質主要六大關鍵因素與綠建築設計手法，建構一份較為科學、便利且可質化量化的「公告場所室內空氣品質調查評估量化表」。所開發的空氣品質調查評估量化表能有效地作為公告場所進行室內空氣品質自主維護管理時調查評估的使用依據，同時協助作為進一步規劃現場檢測、健康診斷以及研擬改善方案的依據。(2) IAQ 簡易檢測方法開發與應用：被公告場所室內空氣品質維護管理專責人員必須進行巡查檢測以符合室內空氣品質自主維護管理作業的要求。由於現有定期檢測方法無法有效達到管理目的且花費時間及金錢，因此僅能依賴平時的巡查檢測來達到自我管理的目標。然而採用直接判讀的巡檢式檢測儀器進行室內空氣品質測量卻又存在著不準確性的風險，尤其是現有市售簡易直讀式儀器對於室內環境 PM10、PM2.5、TVOC 及 HCHO 等污染物的測量結果易受環境條件的影響而導致不準確。因此，此類簡易式儀器需要至少每季定期於現地做現場的校對，以符合其平時巡查檢測測量準確性的需求。基於目前巡檢式方式所面臨到的問題，可運用較高級的可攜式微粒數測量儀器及低溫捕集-熱脫附結合微型氣相層析測量儀器，來進行快速且準確的室內空氣污染物直接測量方法，並可將其運用於各類不同場所作為簡易直讀式儀器的現場比對校正工具。(3) IAQ 健康危害與風險評估：瞭解室內空氣品質檢測結果後，業界通常會延伸以下疑問：在這樣的環境下工作或生活其暴露風險為何？是否致病、致癌、致變異性？會導致的疾病（癌症）與致病（癌）率為何？導致的生命損失年數？增加的醫療支出？污染源為何？如何改善室內空氣品質至可接受的健康風險？本聯盟成員以暴露風險與健康風險的技術將暴露預測模式所建立之長期暴露濃度資料，藉由貝氏統計分析方法將模式推估之暴露濃度預測結果與實際量測資料比對後運用於推估室內污染物之長期暴露實態及其風險。

1.5.4 「室內空氣品質控制技術」
的去除。過去本聯盟成員已利用含氮活性碳及中孔砂材料所製成的複合材料同時控制 CO₂、揮發性有機化合物 (VOCs)、甲醛。另外利用控制塗覆在二氧化鈦載體上銀奈米微粒之大小，可以提高光觸媒之活性，可用於分解臭氧，酸性臭味物質等，對於提昇本國的室內空氣清淨機的技術水平相當有助益。

1.6 對聯盟會員之服務或輔導規劃
1.6.1 聯盟組織架構

聯盟成員的分組如圖 1.4 所示，計畫主持人擔任聯盟總召集人統籌聯盟運作事宜，下設五個工作小組，其中「產官學研資源鏈結推動組」下設綜合技術資訊服務平台，統合會員服務及行政相關業務；「環境及煙道之 PM₂.₅ 及前趨氣體檢測技術」提供聯盟會員關於檢測技術之診斷及諮詢，並提昇檢測設備的自製能力；「PM₂.₅ 及前趨氣體控制技術」提供聯盟會員關於控制技術之診斷及諮詢，並提昇控制設備的自製能力；「室內空氣品質技術服務平台」提供聯盟會員關於檢測技術之診斷及諮詢；「室內空氣品質控制技術」提供聯盟會員關於控制技術之診斷及諮詢，並提昇本國的室內空氣清淨機的技術水平。
圖 1.4『PM$_{2.5}$及奈米微粒監測與控制技術聯盟』的人員分組
1.6.2 服務及輔導規劃

本計畫對聯盟會員提供之服務及輔導分成以下5項：

1. 技術諮詢與診斷
(1) 技術諮詢服務：聯盟設置單一聯繫窗口，提供聯盟會員一站式諮詢服務。會員提出之問題將
經過初步分析後，提供相關資訊或協助安排相關專長研究團隊進行深入答覆，並視實際需求規
劃實地訪視、洽談合作會議或短期諮詢等方案以解決會員問題。
(2) 專家訪廠診斷服務：聯盟成員視實際需要或定期至會員廠商處進行訪問，以了解業者的問
題並提出解答。

2. 實驗設備使用及委託測試
(1) 測試驗證分析服務
(2) 實驗室設備租用
(3) 小量樣品製程輔導

3. 產官學研資源導入
(1) 專利授權媒合
(2) 技術移轉媒合
(3) 產學合作媒合

4. 產業交流與技術資訊
(1) 科技動態資訊服務：即時訊息發佈、學界成果報導
(2) 技術研討會
(3) 廠商交流活動(商談會、成果發表會)
(4) 技術研析專題報告(依會員廠商需求，提供客製化技術研析報告)

5. 人才培育與媒合
(1) 職能教育訓練服務
(2) 徵才資訊公告與媒合
(3) 產學專班與實習媒合
2、報告表格

2.1 成果摘要綜整表(第2年)

3、報告表格

3.1. 成果摘要綜整表(第2年)

<table>
<thead>
<tr>
<th>項目</th>
<th>目標值</th>
<th>実際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 本聯盟已掌握的技術有PM2.5 定電聚塵控制技術</td>
<td>本聯盟的高效率酸霧洗淨技術 - 高效</td>
<td>與計畫書無差異。</td>
<td>1. 本聯盟已掌握的技術有PM2.5 定電聚塵控制技術</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>目標值 (預期成果)</td>
<td>實際達成值</td>
<td>簡要差異分析</td>
<td>上年度執行成果</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1. 廠商</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 總會員數：25家</td>
<td>(1) 總會員數：33家</td>
<td></td>
<td>合財團法人工業技術研究院會員1家，第二年會員費10,000元。</td>
<td></td>
</tr>
<tr>
<td>(2) 收費會員：25家</td>
<td>(2) 收費會員：33家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 免費會員：0家</td>
<td>(3) 免費會員：0家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 北部：19家</td>
<td>(4) 北部：25家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) 中部：1家</td>
<td>(5) 中部：7家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) 南部：1家</td>
<td>(6) 南部：1家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) 東部：1家</td>
<td>(7) 東部：0家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 個人會員：0家</td>
<td>2. 個人會員：0家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 其它：1家</td>
<td>3. 其它：1家</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>其它：</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本聯盟截至106年10月31日止，累積會員總數已達29家(含企業會員28家、研究型法人會員1家)，已達成預期目標。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 聯盟會員數</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11
<table>
<thead>
<tr>
<th>項目</th>
<th>目標值 (預期成果)</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 一般性收入：1260仟元</td>
<td>1. 一般性收入：2641.525仟元</td>
<td>億振科技股份有限公司已完成會員簽約並開立收據，會員費預計在年底前入帳。</td>
<td>1. 一般性收入：1159.4仟元</td>
<td></td>
</tr>
<tr>
<td>(1) 一般性收入：350仟元</td>
<td>(1) 會員費收入：500仟元</td>
<td>(2) 銷售費收入：1019.4仟元</td>
<td>(1). 會員費收入：130仟元</td>
<td></td>
</tr>
<tr>
<td>(2) 技術服務收入：600仟元</td>
<td>(2) 技術服務收入：2141.525仟元</td>
<td>(3). 其它項目收入：10仟元</td>
<td>(2). 技術服務收入：10仟元</td>
<td></td>
</tr>
<tr>
<td>(3) 其它項目收入：310仟元</td>
<td>(3) 其它項目收入：0仟元</td>
<td></td>
<td>(3). 其它項目收入：10仟元</td>
<td></td>
</tr>
<tr>
<td>其它：</td>
<td>其它：</td>
<td></td>
<td>其它：</td>
<td></td>
</tr>
<tr>
<td>1. 會員費收入：</td>
<td>1. 會員收入為：一般會員10,000元共25家、銀牌會員50,000元共3家、金牌會員100,000元1家(已開收據，未入帳)。</td>
<td></td>
<td>1. 其它項目收入：</td>
<td></td>
</tr>
<tr>
<td>(1) 現有有效會員第二年會員費收入10仟元</td>
<td>2. 技術服務收入：台灣檢驗科技股份有限公司113,125元、香港商南德品體驗顧問(股)公司台灣分公司110,000元、環興科技股份有限公司60,900元、大宇國際公司102,000元、台灣思百吉股份有限公司15,000元、環華顧問公司134,000元、大賀智慧聯網公司66,000元、上寰科技公司24,500元、億振科技股份有限公司66,000元、儒智環境公司200,000元、工研院250,000元、伊特笙流體公司1,000,000元(已開收據，未入帳)。</td>
<td></td>
<td>(1). 非科技部的計畫收入7200仟元</td>
<td></td>
</tr>
<tr>
<td>(2) 現有有效研究型法人之技術服務收入300仟元</td>
<td></td>
<td></td>
<td>(2). 科技部的計畫收入6200仟元</td>
<td></td>
</tr>
</tbody>
</table>

3. 聯盟經常性營運收入 (仟元)
<table>
<thead>
<tr>
<th>項目</th>
<th>目標值</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
</table>
| | | (1)設立聯盟宣傳網站：201504完成
(2)聯盟推廣活動：2場 | (1)設立聯盟宣傳網站：201504完成
(2)聯盟推廣活動：1場 | 與計畫書無差異。 | (1)設立聯盟宣傳網站：201504完成
(2)聯盟推廣活動：1場 |
| 其它： | | 1. 本聯盟發起人教授與聯盟成員(利得儀器股份有限公司、科安業股份有限公司、志貞儀器股份有限公司)及國家衛生研究院(陳仁翔博士)共同辦理PM2.5及金屬檢測研討會，時間為106年4月11日，向外界推廣本聯盟之檢測及監測技術。
TEOM的研究、PM2.5感測器的研究、SC 削的PM2.5分徑技術及新型、無微粒反彈、無需維護的PM2.5及PM10進口設計，酸味的監測與刪除等，聯盟成員也將於現場分享酸氮測試、重金屬的自動及手動測試技術並向外界展示儀器。 | | 其它：
1. 2016.03.07:加熱塗布黏箱機糞菌分佈及高效率文氏洗滌塔控制效率評估(新寶元鋼鐵股份有限公司)
2. 2016.03.28:使用NMC1採樣3點(工業研究院的計畫)
3. 2016.03.30:新寶元股份有限公司實踐測試結果討論(2016.03.07測試)
4. 2016.03.06:聯盟成員開會及與普萊斯特先生的討論
高效率風巢式洗滌塔技術
5. 2016.04.12:與美國ORNL聯盟承教授及志貞儀器公司討論金屬自動監測 |
<p>| | | 2. 聯盟將再持續辦理VOC控制、靜電集塵技術等推廣研討會，向業界推廣聯盟成員及聯盟會員的技術，以解決國內PM2.5的排放問題，以改善空氣品質。 | | |</p>
<table>
<thead>
<tr>
<th>項目</th>
<th>目標值（預期成果）</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)舉辦技術研討會(場)</td>
<td>2場</td>
<td>(1)舉辦技術研討會(場)</td>
<td>4場</td>
<td>與計畫書無差異。</td>
</tr>
<tr>
<td>(2)技術研討會參與(人)</td>
<td>30人</td>
<td>(2)技術研討會參與(人)</td>
<td>196人</td>
<td></td>
</tr>
<tr>
<td>(3)專業諮詢服務(次)</td>
<td>24次</td>
<td>(3)專業諮詢服務(次)</td>
<td>40次</td>
<td></td>
</tr>
<tr>
<td>(4)專業諮詢服務(人)</td>
<td>50人</td>
<td>(4)專業諮詢服務(人)</td>
<td>84人</td>
<td></td>
</tr>
<tr>
<td>(5)訪廠現地指導(次)</td>
<td>5次</td>
<td>(5)訪廠現地指導(次)</td>
<td>4次</td>
<td></td>
</tr>
<tr>
<td>(6)訪廠現地指導(人)</td>
<td>6人</td>
<td>(6)訪廠現地指導(人)</td>
<td>12人</td>
<td></td>
</tr>
<tr>
<td>其它：</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 本聯盟於106年2月24日邀請美國橡樹嶺國家實驗室(ORNL)的傑出研究員鄭盟東博士向聯盟會員分享一些在ORNL的研究成果，如飛機及固定污染源排放測量，及大氣及汙染源金屬元素的雷射誘導發光譜的自動監測技術等。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 聯盟會再度舉辦技術研討會至少一場，及各種諮詢及現地指導工作。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 對聯盟會員之服務或輔導規劃
<table>
<thead>
<tr>
<th>項目</th>
<th>目標值 (預期成果)</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 新產品：1件</td>
<td>(1) 新產品：0件</td>
<td>與計畫書無差異。</td>
<td>(1) 新產品：0件</td>
<td></td>
</tr>
<tr>
<td>(2) 新技術：2件</td>
<td>(2) 新技術：0件</td>
<td>(2) 新技術：0件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 專利：1件</td>
<td>(3) 專利：0件</td>
<td>(3) 專利：1件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其它：</td>
<td>其它：</td>
<td>其它：</td>
<td>其它：</td>
<td></td>
</tr>
</tbody>
</table>

1. 本聯盟蔡春進教授團隊協助會員廠商生產家用電開發一2階式低臭氧高效率室內空氣清淨機，蔡教授利用微粒充電、集塵理論及實驗設計，設計出此清淨機，本清淨機在研發後會進行CADR測試及一次時效高效率測試及長時間負荷測試。廠商會提出低臭氧高效率室內空氣清淨機的專利申請。
2. 改良第一年「本聯盟蔡春進教授團隊協助會員廠商專利儀器公司研發一新型FM2.5微粒採樣分析方法」，將原為一階式平躺式靜電微粒收集器，改良成二階式以降低異常生成物。
<table>
<thead>
<tr>
<th>項目</th>
<th>目標值 （預期成果）</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)技術服務：15件</td>
<td>(1)技術服務：26件</td>
<td>與計畫書無差異。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)技術轉移：0案</td>
<td>(2)技術轉移：1案</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)技術轉移收入：0千元</td>
<td>(3)技術轉移收入：86,282千元</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)產學合作計畫已簽訂合約：0件</td>
<td>(4)產學合作計畫已簽訂合約：2件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)產學合作計畫經費：300千元</td>
<td>(5)產學合作計畫經費：1217.4千元</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他：</td>
<td>其他：</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>和聯盟廠商共同提出科技部產學合作計畫</td>
<td>混合靜電及過濾PM2.5控制設備技術，已橋接至小松環保公司，先期技術轉移金額為86,282元。</td>
<td>與計畫書無差異。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 與小松環保公司簽訂科技部產學合作研究計畫（應用型） “產學合作計畫—複合式PM2.5收集設備的開發研究”，共917,400元。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 與工研院簽訂“PM2.5感測器微型設計技術數值模擬計畫”（106/02/01-106/07/31），300,000元。</td>
<td>其他：</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>目標值（預期成果）</td>
<td>實際達成值</td>
<td>簡要差異分析</td>
<td>上年度執行成果</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>8. 響助聯盟會員衍生成果</td>
<td>(1)聯盟會員新聘人員：0人 (2)聯盟會員衍生產值：80000仟元 其他：增加聯盟會員廠商的年度衍生金額為8仟萬元左右。</td>
<td>與計畫書無差異。</td>
<td>(1)聯盟會員新聘人員：0人 (2)聯盟會員衍生產值：17263仟元</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>目標值 (預期成果)</td>
<td>實際達成值</td>
<td>簡要差異分析</td>
<td>上年度執行成果</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>9. 其它重要成果</td>
<td>無</td>
<td>與計畫書無差異。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>目標值（預期成果）</th>
<th>實際達成值</th>
<th>簡要差異分析</th>
<th>上年度執行成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.大學</td>
<td>0人</td>
<td>1.大學：__人</td>
<td>與計畫書無差異。</td>
<td>1.大學：2人</td>
</tr>
<tr>
<td>2.碩士</td>
<td>4人</td>
<td>2.碩士：__人</td>
<td></td>
<td>2.碩士：4人</td>
</tr>
<tr>
<td>3.博士</td>
<td>2人</td>
<td>3.博士：__人</td>
<td></td>
<td>3.博士：2人</td>
</tr>
<tr>
<td>4.博士後</td>
<td>0人</td>
<td>4.博士後：__人</td>
<td></td>
<td>4.博士後：0人</td>
</tr>
<tr>
<td>5.專任助理</td>
<td>1人</td>
<td>5.專任助理：__人</td>
<td></td>
<td>5.專任助理：2人</td>
</tr>
</tbody>
</table>
2.2 產學小聯盟營運收入收支報告表(第 2 年)

附件四

PM2.5及奈米微粒監測與控制技術聯盟產學小聯盟營運收入收支報告表
(106年02月01日～106年10月23日)

<table>
<thead>
<tr>
<th>收入項目 (105C608)</th>
<th>金額</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>會員費</td>
<td>399,990元</td>
<td></td>
</tr>
<tr>
<td>廠商會員 28名，會員費 389,990元(扣除手續費 10元)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>法人會員 1名，會員費 10,000元</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計 399,990元</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>技術服務收入 (105C609)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,141,505元</td>
</tr>
<tr>
<td>1. 環興科技股份有限公司委託檢測第一期款 30,440元(扣除手續費 10元)</td>
</tr>
<tr>
<td>2. 台灣思百吉股份有限公司委託測試 15,000元</td>
</tr>
<tr>
<td>3. 台灣檢驗科技(股)公司委託檢測共 113,125元</td>
</tr>
<tr>
<td>4. 香港商南德產品驗證顧問股份有限公司委託檢測共 110,000元</td>
</tr>
<tr>
<td>5. 墾旭顧問有限公司委託檢測 134,000元</td>
</tr>
<tr>
<td>6. 大宇國際電器有限公司委託檢測共 102,000元</td>
</tr>
<tr>
<td>7. 環興科技股份有限公司委託檢測第二期款 30,440元(扣除手續費 10元)</td>
</tr>
<tr>
<td>8. 大宇智聯網股份有限公司委託檢測共 66,000元</td>
</tr>
<tr>
<td>9. 上寰科技股份有限公司委託檢測共 24,500元</td>
</tr>
<tr>
<td>10. 墾旭顧問有限公司委託檢測共 66,000元</td>
</tr>
<tr>
<td>11. 墾旭顧問科技股份有限公司委託檢測 200,000元</td>
</tr>
<tr>
<td>12. 工研院委託檢測 250,000元</td>
</tr>
<tr>
<td>合計 1,141,505元</td>
</tr>
</tbody>
</table>

二、總支出：新台幣 1,343,657元

<table>
<thead>
<tr>
<th>支出項目</th>
<th>金額</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>差旅費</td>
<td>49,144元</td>
<td></td>
</tr>
<tr>
<td>學生差旅費、計畫主持人差旅費</td>
<td></td>
<td></td>
</tr>
<tr>
<td>食品</td>
<td>72,895元</td>
<td></td>
</tr>
<tr>
<td>106/02/17、106/04/20 討論聯盟會員技術服務進展及餐費</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106/07/14 研習會議餐費</td>
<td></td>
<td></td>
</tr>
<tr>
<td>项目</td>
<td>金额（单位：元）</td>
<td>备注</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>演講締點費</td>
<td>23,438</td>
<td>106/07/14 至 106/08/15 會費兼合會費</td>
</tr>
<tr>
<td>計畫主持人工作費</td>
<td>97,832</td>
<td>106/02/04 月活動開會人數及課程內容計分主持人工作費</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106/06/10 月活動開會人數及課程內容計分主持人工作費</td>
</tr>
<tr>
<td>工作費</td>
<td>421,047</td>
<td>106/02/10 至 106/06/30 勤勞型、勞動型及自僱人工作費</td>
</tr>
<tr>
<td>專任計畫人員薪資</td>
<td>180,250</td>
<td>106/02/10 至 106/06/30 月薪計酬</td>
</tr>
<tr>
<td>專任計畫人員薪資及離職儲金</td>
<td>10,896</td>
<td>106/02/10 至 106/06/30 月薪計酬及離職儲金</td>
</tr>
<tr>
<td>專任計畫人員薪資及離職儲金</td>
<td>21,810</td>
<td>106/02/10 至 106/06/30 月薪計酬及離職儲金</td>
</tr>
<tr>
<td>實驗耗材費</td>
<td>310,736</td>
<td>退付職能歸屬股份有限公司執行本計畫業務需要之實驗耗材費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>退付嘉惠科技工務室工作者本計畫業務需要之實驗耗材費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>退付嘉惠科技工務室工作者本計畫業務需要之實驗耗材費用</td>
</tr>
<tr>
<td>安全測試費</td>
<td>16,000</td>
<td>退付財團法人中華民國營業安全衛生檢查協會執行本計畫業務需要之安全測試費用</td>
</tr>
<tr>
<td>維修技工費</td>
<td>92,247</td>
<td>退付嘉惠科技工務室工作者本計畫業務需要之維修費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>雇用金代管之執行本計畫業務需要之維修費用</td>
</tr>
<tr>
<td>委託服務費</td>
<td>3,000</td>
<td>委託本計畫業務需要之委託服務費用</td>
</tr>
<tr>
<td>意外保險費</td>
<td>15,712</td>
<td>雇用金代管之執行本計畫業務需要之計畫相關人員意外保險費用</td>
</tr>
<tr>
<td>海報費/文具費/影印費</td>
<td>28,665</td>
<td>退付財團法人中華民國財團法人中華民國營業安全衛生檢查協會執行本計畫業務需要之海報費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>雇用金代管之執行本計畫業務需要之文具費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>雇用金代管之執行本計畫業務需要之影印費用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>雇用金代管之執行本計畫業務需要之影印費用</td>
</tr>
</tbody>
</table>

注：表格中未包含科技部補助經費、學生補助經費的內容，請依規定另行撰寫「科技部補助專題研究計畫經費收支明細報告表」。
附註：
1. 上表之收支內容不包含科技部補助經費。屬於科技部補助經費的部分，請依規定另行填寫「科技部補助專題研究計畫經費收支明細報告表」。
2. 另有億振科技股份有限公司會員費 100,000 元及伊特笙流體工程有限公司技術服務費 1,000,000 元均已開發票預計今年底入帳。
3. 報告內容

3.1 聯盟成員

<table>
<thead>
<tr>
<th>聯盟成員</th>
<th>聯盟成員簡介</th>
<th>產業別</th>
<th>與聯盟相關性 (簡述提供那些技術服務等)</th>
</tr>
</thead>
</table>
| 1. 普路托科技有限公司 | 1. 各領域產業研發機台的設計製作。
2. 實驗 DAMO 機台的規畫製作。
3. 撰寫經濟部研發計畫 (CITD、SBIR)。
4. 自動化控制系統整合製作。
5. 有限元分析模擬 (FEA)。
6. 銷售自行研發的專利機台。 | 其他專業、科學及技術服務業 | 本聯盟在設備研發與自動化系統整合已有多年的經驗，且有許多設備及自動化系統的產品應用於產業界，例如低污染的靜電集塵設備、連續大氣氣體與 PM2.5 微粒成分分析系統、濕式靜電集塵設備等。本聯盟擁有相當完善的實驗儀器與設備提供普路托公司於機台的研發、自動化控制系統整合與自行研發的產品的改良與效果評估專業的建議與完善的設備。 |
| 2. 志尚儀器股份有限公司 | 志尚儀器成立於 1990 年一向以朝向專業氣體分析儀器設備代理商而努力，為求提供客戶更高之服務品質已於 2006 年 2 月通過 ISO9001 之認證。目前該公司組織架構基本上分為半導體相關儀器設備、工安製程監測儀器設備、環保監測儀器設備及特殊應用 (質譜與穩定同位素等相關應用) 等四個部門，此外為了服務南台灣廣大的客戶並於 2015 年正式設立高雄辦事處。 | 環境、儀器製造業 | 本聯盟在環境、煙道之 PM2.5 及前驅氣體監測控制技術擁有相當成熟的技術，且設備非常完善，能提供志尚儀器公司在環保監測儀器設備研發的提升與公司內員工的教訓訓練課程，以提升公司整體競爭力。 |
| 3. 台耘工業股份有限公司 | 台耘工業股份有限公司設立於 1996 年，為一專業環保工程顧問公司，從事靜電集塵器 (Electrostatic Precipitator) 維護、保養、效率提升與電控系統更新改善服務。 | 專業、科學及技術服務業 | 本聯盟在靜電收集微粒技術上受到國內外學界與業界高度的肯定，發明的濕式靜電旋風集塵器、線在板上低汙染靜電集塵器與低臭氧靜電空氣清淨機等發明，皆有投稿至知名期刊與申請專利，因此對於台耘共業公司在靜電集塵器的研發、性能評估、改良都有非常大的助益。 |
| 4. 台灣檢驗股份有限公司 | SGS 是全球在檢驗、查證、測試和驗證服務的領導者，為全球公認的品質和誠信標準，在全世界擁有超過 85,000 名員工分佈於 1,800 多個營運分公司及實驗室。主要核心業務有四類：
(1) 檢驗：提供領先世界的全方位檢驗及查證服務，如檢查貨 | 專業、科學及技術服務業 | SGS 主要的服務項目為產品的檢驗、測試、驗證、查證。本聯盟擁有完善的設備，例如奈米、微米微粒產生系統，且聯盟人員皆有受過設備的操作訓練，因此能提供 SGS 的產品測試，並能在測試後提出完整的測試報告以及產品建議。 |

說明：(請針對聯盟會員概況、產業別，以及聯盟所提供技術與業界會員之相關性進行說明)
5. 生原家電股份有限公司

生原家電自1950年創立以來，至今已有半個世紀，「誠信、質精、服務、創新」一直是生原的企業經營理念。秉持著這樣的信念，1972年自創了阿拉斯加品牌，生原家電開始投入製造、設計、生產無聲換氣扇及藝術吊燈扇…等，產品質優行銷國內外，備受各界肯定。

生原家電認為只有優良的品質、不斷的創新，企業才能永續經營，也因如此生原不斷投資最精密的研究開發設備及測試儀器，配合全面電腦化作業，並與日本技術合作，不斷研發、精益求精，全面提升生活品質。

製造業

生原家電近年來也投入大量的精神在開發、創新與改良室內清淨機，期能發展出高效率的高品質清淨機，改善居家的室內空氣品質。本聯盟在靜電清淨機的領域上有高度的專業，在靜電集合微粒技術上的專業受到國內外學界與業界高度的肯定，發明的濕式靜電集塵器、線在板上低汙染靜電集塵器與低臭氧靜電空氣清淨機等發明，皆有投稿至知名期刊與申請專利。因此本聯盟能提供生原家電公司在清淨機的原型開發、測試與後續的改良上提供專業的建議與測試。

6. 台灣賽默飛世爾科技股份有限公司

賽默飛世爾科技於2012年在台灣設立分公司，提供分析儀器、實驗室設備、臨床診斷及相關試劑和耗材。台灣賽默飛世爾科技期望將世界級的先驅技術和產品帶給台灣的客戶，並提供應用開發與培訓等多項服務，立志成為您在科學領域最好的夥伴。服務項目包括：分析技術事業群臨床診斷事業群實驗室產品事業群。

儀器製造業

本聯盟的實驗室皆有相當完善且精密的設備，能提供台灣賽默飛世爾公司在分析技術與實驗室分析儀器、設備與相關試劑與耗材上的需求，並協助該公司培訓精密儀器操作人員與檢測技術的開發應用。

7. 捷思環能有限公司

捷思環能有限公司主要的服務項目為
<table>
<thead>
<tr>
<th>公司名称</th>
<th>简介</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Technology and Energy Saving Co., Ltd.</td>
<td>成立於2014年，以生活健康促進與環境友善技術為目的，致力相關環境感測(監測)、污染防制、能源管理與節能技術開發，以提供舒適環境與低耗能源需求之最佳解決方案。</td>
</tr>
<tr>
<td>小松環保股份有限公司</td>
<td>小松環保自1972年開始努力且迅速的擷取世界先進國家的濾材及環保相關資訊，並且由日本以及歐美各國提供技術與原料，引進品質優良且價格低廉的濾材及濾布，供應國內產業界所需，使產業在生產過程中，將汙染降低至最低程度，以提升環境的品質。</td>
</tr>
<tr>
<td>綠川工程顧問股份有限公司</td>
<td>綠川工程顧問股份有限公司是由環工、化工、海洋、都計及景觀設計等專業人員所組合而成的工作團隊，執行政府機關與民間機構之環境影響評估、空氣污染、水污染及廢棄物管制等相關計畫。</td>
</tr>
<tr>
<td>恆茂有限公司</td>
<td>恆茂有限公司成立於1953年，秉著誠信經營之理念，引進國外優良產品，提升產業競爭力。目前主要業務為進口化學分析儀器及化工原料。</td>
</tr>
<tr>
<td>香港商南德產品驗證顧問(股)公司台灣分公司</td>
<td>TÜV SÜD 集團在中國與幾個著名的機構有業務往來，其中包括：中國出入境檢驗檢疫協會(CIQCA)、中國品質認證中心(CQC)和中國檢驗認證集團有限公司(CCIC)。TÜV SÜD 集團的服務宗旨是保護客戶品牌，保證整個供應鏈和銷售鏈中的產品質量一致，有效降低企業風險。</td>
</tr>
<tr>
<td>弘準科技有限公司</td>
<td>弘準科技有限公司為美商儀器大廠是德科技KEYSIGHT公司在台灣教育市場之專業經銷商，致力於研究所、大學、科技大學、職業訓練中心、高中、高職等單位之儀器供應商。據點分佈全台灣，以便提供全方位的服務。</td>
</tr>
<tr>
<td>吉能科技股份有限公司</td>
<td>吉能科技股份有限公司已經</td>
</tr>
</tbody>
</table>
深耕空氣污染防治及空氣品質問題超過十年，經由多年的經驗，吉能公司深入了解高階的空氣污染防治技術，並且具備完整解決方案的能力。

14. 科安企業股份有限公司
科安企業股份有限公司成立於 1984 年，創業階段著重於替國內客戶尋找環境空氣採樣分析設備及重金屬檢測前處理設備，並著重於售前售後的應用及維修服務，強調對客戶提供專精的技術支援；另一方面也持續依國內客戶的需求與提供國際市場最新的分析與採樣技術資訊，先後引進其他先進的儀器。

15. 隆傑科技股份有限公司
隆傑科技成立於 1992 年六月，主要代理產品為顯示器質量測儀器、嵌入式系統開發工具、編譯器、即時作業系統、實驗評估板、燒錄器、軟體工程管理系統、電路板邊界掃描測試、工業級電腦、軍規電腦、測試用天線等，並可以根據客戶需求提供專案及系統整合服務。

16. 利得儀器股份有限公司
利得集團多年來參與在許多國家級空氣品質監測網的設置、更新、操作與維修等工作中，最具代表性就屬行政院環保署 (80 站) 與台灣電力公司 (55 站)。為因應廣大客戶群的需求，利得集團更不断投入在新監測技術與新產品的開發上，協助解決各種多變的環境議題。

17. 傑智環境科技股份有限公司
傑智環境科技公司成員為『全方位空氣淨化與節能專業』的卓越組合，提供高科技電子廠、PU 合成皮業、塗佈印刷業及化工廠等產業空氣污染防治及回收設備與系統，如揮發性有機氣體 (VOCs) 淨化處理系統、無機酸鹼氣體及毒性氣體淨化處理系統、廢氣中揮發性有機溶劑回收設備等，這些都是本聯盟成員擅長的領域，能使傑智環
整合技術服務。
主要業務範圍包括：揮發性有機氣體 (VOCs) 淨化處理系統、廢氣中揮發性有機溶劑回收設備、低閾值氣態分子污染物除臭設備、無機酸鹼氣體及毒性氣體淨化處理系統、空氣分子污染物 (AMC) 淨化設備、廢氣焚化爐、節能設備、系統自動控制整合與設計、以及提供高科技廠廠務系統全方位維護保養服務(TMS)，在不斷的創新與研究精神下，提供客戶滿意的『全方位空氣淨化與節能專業』服務 (Total Air Solution)。

18. 伊特笙流體工程有限公司
伊特笙流體工程公司的經營項目有電信工程業、配管工程業、儀器、儀表安裝工程業、精密儀器批發業、交通標示工程業、自動控制設備工程業，製造業
本聯盟為伊特笙流體工程有限公司進行洗滌塔效率測試，並提出相關建議，以獲得最佳處理效率。

19. 晃誼科技股份有限公司
晃誼科技是台灣最大工程系整合同廠商及空污排放系統供應商，業務項目眾多，其中有洗滌塔設備以及 12 吋晶圓廠製程廢氣處理系統，在本聯盟的實驗室都有齊全的設備能為其進行檢驗、改良，並給予相應的幫助。

20. 寰昶企業有限公司
寰昶企業有限公司創立於西元 1988 年，代理歐美儀器設備與自行設計氣膠與奈米微粒的相關設備，本聯盟的成員在氣膠分析、氣膠監測與氣膠產生器方面的造詣相當高，能幫助寰昶企業研發與改善相關產品。

21. 金石山工程顧問股份有限公司
金石山工程顧問的業務其中一項有包括空氣汙染許可文件申請，在申請方面遇到的相關問題，可與本聯盟的成員進行討論交流，以解決申請時的問題。

22. 億振科技股份有限公司（金牌）
億振科技股份有限公司主要服務項目為通用電池批發、電腦及電腦週邊設備批發、電子零組件製造等。
<table>
<thead>
<tr>
<th>序号</th>
<th>公司名称</th>
<th>简介</th>
<th>联盟服务</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>寰普工程股份有限公司</td>
<td>寰普工程股份有限公司提供高品質監測儀器予環境監測、工業安全、工業製程監控、毒化物緊急災害應變等領域外，並提供整體系統設計規劃、儀錶管線及站房施工、各式系統組裝及資料處理系統整合規劃等服務。主要解決方案包括製程防爆監測系統之設計規劃、分析尾气回收系統設計規劃、工業安全系統設計規劃、環境品質監測系統設計規劃。</td>
<td>寰普工程股份有限公司代理衆多偵測器、分析儀器，例如懸浮微粒分析儀、粒狀物分析儀、煙氣連續排放監測系統、Flare廢氣燃燒塔監測設施等，並提供維修系統規劃等專業服務。本聯盟能協助寰普工程股份有限公司在維修、測試或設計規劃方面遇到的問題，使寰普工程提升他們的技術能力。</td>
</tr>
<tr>
<td>24.</td>
<td>台旭環境科技中心股份有限公司</td>
<td>台旭取得交通部溫泉檢測機構、標準檢驗局ROHS及內政部綠建材試驗機構，至今取得環保署環檢許可已超過600多項檢測項目，替全國10000多家以上客戶提供廢氣、廢水、廢棄物、噪音、土壤、地下水、室內空氣品質、毒性化學物、綠建材、溫泉、底泥...等全方位環保化學技術服務。並通過ISO17025國際品質實驗室，擁有近200位專業工程師，於北、中、南40多輛採樣監測車，提供360天，24小時精確可靠及即時快速的服務。台旭環境科技中心為使檢驗結果具有絕對的公信力，從採樣、檢測、分析、品保／品管、人員訓練、數據管理等都有一套完整的系統。</td>
<td>台旭環境科技中心股份有限公司主要的工作項目為環境檢測採樣、檢測、分析、品保／品管。本聯盟可協助台旭環境科技，並對其員工進行培育與訓練，另外聯盟成員還能解決台旭環境科技中心在採樣、檢測或分析上遇到的各種問題。</td>
</tr>
<tr>
<td>25.</td>
<td>密科博股份有限公司(銀牌)</td>
<td>MYCROPORE密科博公司是在2013年創立於新加坡。MYCROPORE CORPORATION密科博在2015年改於台灣註冊並將總部設於新竹。密科博團隊有超過100年的過濾微汙染管控業務經驗，擁有多項台灣與國際過濾設計專利，並建立生產與行銷通路。</td>
<td>密科博股份有限公司主要業務是過濾微汙染管控，另外還擁有多項台灣與國際過濾設計專利。本聯盟利用現有設備測量密科博股份有限公司的過濾產品的過濾效率，必提出過濾問題的相關解決方法。</td>
</tr>
<tr>
<td>26.</td>
<td>大宇國際電器有限公司(愛博特) (銀牌)</td>
<td>大宇國際電器有限公司在製造果汁機、攪拌機、直立式電扇等製造經驗已長達20年之久，且在中國、香港、台灣都有據點。公司內部有專業、科學及技術服務。</td>
<td>本聯盟實驗室擁有許多微量粒產生系統，微粒監測系統能提供大宇國際電器有限公司的霧化器產品相關測試工作，亦可提供人員的教育訓練，使該公司員工可親自操作儀器與進行檢</td>
</tr>
</tbody>
</table>
業的研發、生產、品管部門，確保每件產品都能符合消費者所需，且品質極為優良。

27. 大謙科技材料股份有限公司(銀牌) 大謙科技材料的團隊結合醫生、材料、設計、口罩過濾等專業相關領域人員，歷經多年研發改良，大謙生產的口罩同時擁有功能性與時尚性。製造業 大謙科技的口罩採用 PTFE 微孔薄膜材料。本聯盟協助大謙科技材料股份有限公司進行口罩產品的研發及測試，並提出許多改良的建議。

28. 建榮造漆股份有限公司 建榮造漆股份有限公司主要服務項目為木器塗料、PU 防水材、PU 塗料、EPOXY、香蕉水、透明漆 製造業 建榮造漆股份有限公司主要生產各式塗料，而製造過程產生的 VOCs 氣體則會由本聯盟成員輔導處理。

29. 工業技術研究院(其他) 工研院綠能與環境研究所半個世紀以來，伴隨台灣經濟成長的腳步，積極進行研發及創新以協助我國在資源開發利用、再生能源、節能減碳、源效率與工安環保等技術的提升。在未來，綠能與環境研究所將持續投入前瞻綠能科技研發，開創節能減碳與永續環境科技，並協助綠能產業發展開創綠能與環境新產業，以達到永續發展的目標。

工業技術研究院一直在資源開發利用、再生能源、節能減碳、環保技術等技術方面不斷提升。本聯盟針對 PM2.5 的監測控制技術擁有完整的技術與設備，能幫助工業技術研究院在此方面的技術更進一步提升。

<table>
<thead>
<tr>
<th>3.2 聯盟收入</th>
<th>項目</th>
<th>會員費</th>
<th>技術服務</th>
<th>技術移轉</th>
<th>衍生計畫</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>聯盟收入(新台幣元)</td>
<td>500,000</td>
<td>2,141,525</td>
<td>86,280</td>
<td>本聯盟另有 PM2.5 感測器原型設計數值模擬計畫、科技部產業合作計畫等共 1,217,400</td>
<td>3,945,205</td>
<td></td>
</tr>
</tbody>
</table>

聯盟收入說明：
1. 廠商入會費：
本聯盟至今共有 29 家會員(28 家廠商、1 家研究型法人會員)，會員費總收入共 500,000 元整(需扣除手續費 10 元)(含 10,000 元研究型法人會員費)。註：億振科技股份有限公司已加入會員，年費 100,000 元已開立收據，近期將入帳，詳附錄)，會員費詳細內容如表 3.1。
2. 技術服務費
技術服務費總收入 2,141,525 元整(需扣除手續費 20 元)(其中含伊特笙流體工程有限公司技術服務費 1,000,000 元已開立收據，近期將入帳，詳附錄)，技術服務費詳細內容如表 3.1。
3. 技術移轉費
已提出一個新穎的靜電及過濾複合式 PM2.5 控制設備，技轉針對黏著性的油煙微粒的排放控制技術給小松環保股份有限公司，該公司已和交通大學簽訂合約書，技術移轉費 86,280 元(詳合約書)。
4. 衍生計畫
＞ 科技部產學合作研究計畫(應用型)”產學合作計畫-複合式 PM2.5 收集設備的開發研究”(106/06/01~107/05/31，計畫編號：MOST106-2622-E-009-011-CC3)，科技部補助 700,000
“PM2.5感測器雛型設依數值模擬計畫”(106/02/01~106/07/31)，300,000 元。

聯盟推廣活動及執行成果說明

本聯盟能提供企業所需的技术、設備或儀器分別為“環境和煙道之PM2.5及前趨氣體檢測技術”、“PM2.5及前趨氣體控制技術”、“室內空氣品質技術服務平台”及“室內空氣品質控制技術”等四類。本聯盟成立至今已有29家會員正式簽約加入，還有其他許多廠商陸續進行洽談中。聯盟定期邀請國外學者來台舉辦PM2.5監測與控制技術交流研討會，及不定期與會員廠商進行討論、實地勘察、設備研發等，期能提升國內環保產業的發展與永續發展。表3.1為本聯盟106年2月1日至106年10月31日具體工作與聯盟收入詳細說明，包括：

(1)技術服務26次
(2)專業諮詢及現地指導44次
(3)技術研討會4場
(4)會員大會1場
(5)先期技術移轉1項
(6)衍生計畫2項

表3.1 106.02.01-106.10.31 PM2.5聯盟具體工作與聯盟收入詳細說明表

<table>
<thead>
<tr>
<th>日期</th>
<th>聯盟成員名稱</th>
<th>會員費 10,000 元，累計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/03/15</td>
<td>工業技術研究院</td>
<td>10,000 元</td>
</tr>
<tr>
<td>2016/04/08</td>
<td>普路托科技有限公司</td>
<td>20,000 元</td>
</tr>
<tr>
<td>2016/04/15</td>
<td>志尚儀器股份有限公司</td>
<td>30,000 元</td>
</tr>
<tr>
<td>2016/05/01</td>
<td>台軒工業股份有限公司</td>
<td>40,000 元</td>
</tr>
<tr>
<td>2016/05/01</td>
<td>台灣檢驗股份有限公司</td>
<td>50,000 元</td>
</tr>
<tr>
<td>2016/06/23</td>
<td>生原家電股份有限公司</td>
<td>60,000 元</td>
</tr>
<tr>
<td>2016/07/01</td>
<td>台灣賽默飛世爾科技股份有限公司</td>
<td>70,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>捷思環能有限公司</td>
<td>80,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>小松環保股份有限公司</td>
<td>90,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>綠川工程顧問股份有限公司</td>
<td>100,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>恆茂有限公司</td>
<td>110,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>香港商南德產品驗證顧問(股)公司</td>
<td>120,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>台灣分公司</td>
<td>130,000 元</td>
</tr>
<tr>
<td>2017/02/01</td>
<td>吉能科技股份有限公司</td>
<td>140,000 元</td>
</tr>
<tr>
<td>日期</td>
<td>公司名称</td>
<td>会员费</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2017/02/05</td>
<td>科安企業股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/02/05</td>
<td>陸傑科技股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/02/05</td>
<td>利得儀器股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/02/10</td>
<td>傑智環境科技股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/03/01</td>
<td>伊特笙流體工程有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/03/01</td>
<td>晃誼科技股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/03/15</td>
<td>宸昶企業有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/03/20</td>
<td>金石山工程顧問股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/03/20</td>
<td>億振科技股份有限公司(金牌)</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017/06/01</td>
<td>宏普工程股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/06/20</td>
<td>台旭環境科技中心股份有限公司</td>
<td>10,000</td>
</tr>
<tr>
<td>2017/06/20</td>
<td>密科博股份有限公司(銀牌)</td>
<td>50,000</td>
</tr>
<tr>
<td>2017/06/23</td>
<td>大宇國際電器有限公司(愛博特)(銀牌)</td>
<td>50,000</td>
</tr>
<tr>
<td>2017/07/01</td>
<td>大謙科技材料股份有限公司(銀牌)</td>
<td>50,000</td>
</tr>
<tr>
<td>2017/09/01</td>
<td>建榮造漆股份有限公司</td>
<td>10,000</td>
</tr>
</tbody>
</table>

技術服務：

<table>
<thead>
<tr>
<th>日期</th>
<th>工作內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/02/06</td>
<td>協助環興科技股份有限公司進行微粒粒徑分佈分析儀(TSI NanoScan3910)巡檢工作。技术服務費 30,450 元，累計 30,450 元</td>
</tr>
<tr>
<td>2017/02/06</td>
<td>協助台灣思百吉股份有限公司將UCPC(Model13776, TSI)、N-WCPC (M3788, TSI)與Nano-ID NPC10(PMS)對10 語50nm 的微粒計數比對測試。技術服務費 15,000 元，累計 45,450 元</td>
</tr>
<tr>
<td>2017/02/20</td>
<td>協助台灣檢驗科技股份有限公司測試1 部霧化器對1 種藥劑的分散效果。技術服務費 22,125 元，累計 67,575 元</td>
</tr>
<tr>
<td>2017/02/20</td>
<td>協助台灣檢驗科技股份有限公司測試1 部霧化器對1 種藥劑的分散效果。技術服務費 22,125 元，累計 89,700 元</td>
</tr>
<tr>
<td>日期</td>
<td>服務內容及說明</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>2017/03/06</td>
<td>協助璞旭顧問有限公司測試3部霧化器對3種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/03/16</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/04/10</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/05/08</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/05/10</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/06/02</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/07/04</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/07/04</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/07/04</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/08/09</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/08/28</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/08/28</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/08/28</td>
<td>協助 TUV 測試1部霧化器對1種藥劑的分散效果。</td>
</tr>
<tr>
<td>2017/10/12</td>
<td>協助財團法人工業技術研究院進行酸氣與微粒檢測。</td>
</tr>
<tr>
<td>2017/10/17</td>
<td>協助伊特笙流體工程有限公司的高</td>
</tr>
<tr>
<td>咨詢日期</td>
<td>訪問單位及內容</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2017/02/07</td>
<td>與台綜工業、普路托科技有限公司討論高濃度酸、鹼、IPA 混排的處理技術。</td>
</tr>
<tr>
<td>2017/02/09</td>
<td>與志尚儀器股份有限公司、ORNL 橡樹嶺國家實驗室討論金屬自動化監測技術。</td>
</tr>
<tr>
<td>2017/02/20</td>
<td>與台灣檢驗科技討論超音波霧化器的粒徑分布的測試工作。</td>
</tr>
<tr>
<td>2017/02/21</td>
<td>與韓國漢陽大學討論 SMPS 的測試及校正。</td>
</tr>
<tr>
<td>2017/02/21</td>
<td>與台積電、普路托科技有限公司討論高濃度酸、鹼、IPA 混排的處理技術。</td>
</tr>
<tr>
<td>2017/02/23</td>
<td>在台中生原家電討論空氣清淨機的 CADR 測試與現地訪問。</td>
</tr>
<tr>
<td>2017/02/24</td>
<td>與志尚儀器股份有限公司、巨晶實業有限公司討論 SDEP 的自動化問題及測試。</td>
</tr>
<tr>
<td>2017/02/27</td>
<td>與 Thermo Fisher Taiwan 討論離子層析儀的應用。</td>
</tr>
<tr>
<td>2017/02/28</td>
<td>與太宇國際電器有限公司討論超音波霧化器美國 FDA 認證審查問題。</td>
</tr>
<tr>
<td>2017/03/01</td>
<td>與生原家電討論過濾式空氣清淨機的測試結果。</td>
</tr>
<tr>
<td>2017/03/01</td>
<td>與工研院智慧儀器及系統科技討論 PM2.5 總濃度測試系統。</td>
</tr>
<tr>
<td>2017/03/03</td>
<td>與合堂瑃有限公司、台灣美罩科技股份有限公司討論 PTFE 口罩的測試及認證討論。</td>
</tr>
<tr>
<td>2017/03/07</td>
<td>與 Thermo Fisher Taiwan 討論 TEOM 測值的準確性。</td>
</tr>
<tr>
<td>2017/03/09</td>
<td>與工研院綠能所、普路托科技有限公司討論晶級公司洗滌塔黃煙的控制。</td>
</tr>
<tr>
<td>2017/03/10</td>
<td>與華懋科技、普路托科技有限公司討論半導體的補充空氣 air washer 之設計及需求討論。</td>
</tr>
<tr>
<td>2017/03/15</td>
<td>與台積電、普路托科技有限公司討論 Local Scrubber 改善技術。</td>
</tr>
<tr>
<td>2017/03/21</td>
<td>與利得儀器股份有限公司討論 PM2.5 監測準確度。</td>
</tr>
<tr>
<td>2017/03/22</td>
<td>與志尚儀器股份有限公司討論 NMCI 噴孔焊接問題。</td>
</tr>
<tr>
<td>2017/04/06</td>
<td>與台灣晶技股份有限公司、工研院討論 PM2.5 感測器的開發問題研究討論。</td>
</tr>
<tr>
<td>2017/04/10</td>
<td>與暨南大學討論微型 2.5 感測器測試與校正。</td>
</tr>
<tr>
<td>2017/04/14</td>
<td>與慶佳定型實業有限公司討論高濃度酸、鹼、IPA 混排的處理技術。</td>
</tr>
<tr>
<td>2017/04/18</td>
<td>與傑智科技討論空污設備的設計及測試靜電集塵器之應用。</td>
</tr>
<tr>
<td>2017/04/19</td>
<td>與台積電F15p5 廠商討論半導體廠 Local Scrubber PM2.5 去除技術。</td>
</tr>
<tr>
<td>日期</td>
<td>技術服務項目</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>2017/04/20</td>
<td>與普路托科技有限公司討論聯盟會員技術服務進</td>
</tr>
<tr>
<td>2017/04/21</td>
<td>東山環境技術服務顧問有限公司討論 PM_{2.5}採</td>
</tr>
<tr>
<td>2017/05/01</td>
<td>與台灣技術中心股份有限公司討論 PM_{2.5}的</td>
</tr>
<tr>
<td>2017/05/09</td>
<td>與普路托科技有限公司討論聯盟的技術能力及</td>
</tr>
<tr>
<td>2017/05/09</td>
<td>與台旭環境科技有限公司討論 PM_{2.5}的</td>
</tr>
<tr>
<td>2017/05/15</td>
<td>在台中生原家電進行現地訪問及該公司空氣清淨</td>
</tr>
<tr>
<td>2017/05/26</td>
<td>與傑智科技、上準、金石山討論 PM_{2.5}的監測及</td>
</tr>
<tr>
<td>2017/06/01</td>
<td>與萬豐精密企業有限公司討論大流量 PM_{2.5}採樣</td>
</tr>
<tr>
<td>2017/06/05</td>
<td>與中磊電子討論討論網通設備的碳足跡問題</td>
</tr>
<tr>
<td>2017/06/06</td>
<td>與普路托科技有限公司討論 PM_{2.5}採樣的設計</td>
</tr>
<tr>
<td>2017/06/09</td>
<td>與密科博股份有限公司討論高壓氣體微粒過濾器的</td>
</tr>
<tr>
<td>2017/06/17</td>
<td>在台中生原家電進行現地訪問及空氣清淨機效率</td>
</tr>
<tr>
<td>2017/07/14</td>
<td>與台灣賽弗飛世爾科技股份有限公司討論離子層</td>
</tr>
<tr>
<td>2017/07/16</td>
<td>與密科博股份有限公司討論高壓氣體過濾器的效率測試數據</td>
</tr>
<tr>
<td>2017/08/10</td>
<td>與志尚儀器有限公司討論 NMCI 的設計改善</td>
</tr>
<tr>
<td>2017/08/24</td>
<td>與伊特笙、普路托公司討論空氣污染的排放控制</td>
</tr>
<tr>
<td>2017/09/14</td>
<td>與大宇國際電器有限公司討論噴霧器的 FDA 認證</td>
</tr>
<tr>
<td>2017/09/18</td>
<td>在台中生原家電進行現地訪問及生原家電空氣清</td>
</tr>
<tr>
<td>2017/09/25</td>
<td>普路托科技材料股份有限公司討論空氣過濾材的測試問題</td>
</tr>
<tr>
<td>2017/10/02</td>
<td>與台旭環境科技中心股份有限公司討論 PM_{2.5}的排氣控制技術</td>
</tr>
<tr>
<td>2017/10/11</td>
<td>與宸昶企業有限公司討論 PM_{2.5}的採樣器設計</td>
</tr>
</tbody>
</table>

衍生計畫：

<table>
<thead>
<tr>
<th>日期</th>
<th>技術服務項目</th>
<th>合作機構名稱</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/02/01</td>
<td>PM_{2.5}感測器雛型設計數值模擬計畫</td>
<td>財團法人工業技術研究院</td>
<td>計畫費用300,000元，累計300,000元</td>
</tr>
<tr>
<td>2017/06/01</td>
<td>科技部產學合作計畫—複合式 PM_{2.5}收集器設計</td>
<td>小松環保科技股份有限公司</td>
<td>計畫費用917,400元，累計1,217,400元</td>
</tr>
</tbody>
</table>
備的開發研究

先期技術移轉:

<table>
<thead>
<tr>
<th>日期</th>
<th>先期技術移轉項目</th>
<th>技術移轉機構名稱</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/0601</td>
<td>複合式 PM2.5控制設備先期技術移轉</td>
<td>小松環保股份有限公司</td>
<td>技術移轉收入 86,280元，累計 86,280元</td>
</tr>
</tbody>
</table>
3.3 聯盟推廣活動及執行成果說明:

3.3.1 聯盟網頁

本團隊於105年度在科技部的產學小聯盟計畫補助下，建置PM2.5及奈米微粒監測與控制技術聯盟網頁(http://pm25.nctu.edu.tw/main.php)，提供使用者了解聯盟簡介、活動、成果與服務等資訊，期望藉由本網頁來提升聯盟的知名度並促進業界加入本聯盟的意願，使聯盟專家學者與聯盟會員共同在產學合作計畫、技術發展、專利獲得及新產品開發上努力，共創本國環保產業的技術升級及蓬勃發展。網頁的首頁如圖3所示，使用者可快速在首頁各區塊取得最新消息、聯盟簡介與聯盟活動的資訊，點擊項目標題或上方選單可前往專區查看相關的詳細資料。最新消息專區可發布活動訊息、教育課程等訊息供使用者瀏覽(圖3)，使用者可點擊公告標題以查看詳細的公告訊息。

網頁中的聯盟簡介專區提供聯盟的宗旨及願景、功能、組織及會員介紹。另外，在聯盟組織介紹的次分頁中(圖3)，使用者可了解各專家學者的研究專長及實驗室設備的介紹，在聯盟會員介紹的次分頁中(圖3)。
圖 3.) 則有已加入聯盟的會員清單及徽標圖形。目前已有 29 個聯盟會員，點擊會員清單內各會員的名字即可顯示會員簡介，若點擊會員的徽標圖形(logo)則可前往瀏覽各會員的網頁。
本聯盟成立之宗旨係藉由各會員提出之各項技術、檢測及產品需求，並透過定期之交流討論會，研發試驗、污染檢測及技術服務，使聯盟專家學者共同在真空粒子監測與控制技術上努力，以期與創立本領域產業技術之發展及蓬勃發展。

聯盟簡介
交通大學、中興大學、明志科技大學及元禎豐電子科大等四校的學會專家所組成的“PM2.5及奈米微粒監測與控制技術聯盟”

活動花絮

![活動花絮](image)

![活動花絮](image)

圖3.1 PM2.5及奈米微粒監測與控制技術聯盟網頁首頁
圖 3.2 最新消息專區
台湾大学教授

研究项目：
- 外环境中的细小粒子和生物粒子（PM2.5及UF）
- 检测与控制技术

浙江大学教授

研究项目：
- 光化学污染的监测与控制
- 大气污染的预测与控制

东北师范大学教授

研究项目：
- 重金属的污染与控制
- 食品安全的监测与控制
圖 3.3 聯盟簡介專區-聯盟組織介紹
一般會員：

聯盟會員介紹

42
網頁的聯盟成果專區提供過往活動、研習會與會員大會的照片供使用者瀏覽，如（圖3.5）所示。活動訊息及報名專區列出聯盟舉辦的活動的列表（圖3），使用者可直接在網絡上報名即將舉辦的活動，亦可查詢過往活動的資料或下載相關的活動DM及教材。本聯盟已使用網路報名系統舉辦4次技術研習會以及1次會員大會。服務項目專區介紹各項聯盟的技術服務內容（圖3），如環境與煙道之PM2.5及前趨氣體檢測技術、室內空氣品質技術服務等，可供使用者對本聯盟之功能有進一步的了解。另外在第二年更新了出版品（圖3.8），內容新增研討會影片回顧與演講者簡報，可供會員在研討會結束後瀏覽。
聯盟成果

活動花絮

2017/08/15 2017聯盟會員大會
（15張精選）

2017/07/26 PM2.5的檢測技術研習會
（14張精選）

2017/07/14 工業VOCs及PM2.5排放控制技術研習會
（10張精選）

圖 3.5 聯盟成果專區
活動訊息及報名

活動列表

<table>
<thead>
<tr>
<th>名稱</th>
<th>報名日期/截止日期</th>
<th>活動開始時間</th>
<th>地點</th>
<th>報名人數</th>
<th>動作</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5的篩選</td>
<td>2017-07-18/2017-07-24</td>
<td>2017-07-26 13:30</td>
<td>國立交通大學環工工程研究所環工2樓205室(新竹市大都會1001號)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>106/07/14 工</td>
<td>2017-06-30/2017-07-10</td>
<td>2017-07-14 13:00</td>
<td>台中工業區/永興街10號(台中市光東工業區B1B2)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>PM2.5篩選控</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

圖 3.6 活動訊息及報名專區
本聯盟成立之宗旨為因應各會員單位之各種技術、檢驗及產品需求，並經由定期之交流討論會、現場示範、技術交流及營運服務，促進聯盟專家知識之共同分享及合作計劃。技術發展、專利申請及新產品開發上努力，以共同朝向環保產業界之技術升級及蓬勃發展。

服務項目

委託檢測

一、環境、煙道之PM2.5及氮氧化物氣體檢測技術(含酸性氣體、VOCs、毒性空氣污染物)

- 提供聯盟會員關於檢測技術之診斷及諮詢，並提升檢測設備之使用能力
- 相關檢測儀器設備

可提供之技術:

- 水溶性PM2.5及氮氧化物氣體檢測技術
- 微型粒徑分佈檢測技術
- 煙道及大氣PM2.5質量濃度檢測技術
- 超細及大氣氣體濃度檢測技術
- 突破性大氣VOC檢測技術
- 奈米微粒檢測技術

二、PM2.5及氮氧化物控制技術(含VOCs，毒性空氣污染物)

可提供之技術:

- 塵氣粒径分佈檢測技術
- 高效率電動洗滌器
- 活性碳吸附層技術
- 多層結構碳極板技術
- 新型鈦酸鈣基的微孔封閉控制技術
- 機械高效能電動洗滌器
- 防腐性能優良電動洗滌器
- 高效電動洗滌器的高效率控制技術
- 碳鋼製電動洗滌器
- 低能耗電動洗滌器
- 高效電動洗滌器的高效率控制技術

46
三、室內空氣品質（Indoor Air Quality, IAQ）技術服務平台

- 適轄公衆場所與IAQ相關產業業者之間的互動與交流

- 藉由整合性的IAQ改善與管理機制達到預期的管理效果，也可以節省公衆場所資源運作投入而成效不斷的困境。

四、室內空氣品質控制技術

- 提供業界業務於技術控制之評估及諮詢，並提升本區的室內空氣清淨機的技術水平。

可提供之技術：
- 燃燒後室內靜電髒腫防制技術
- 高效低壓氣電二氧化碳過濾技術
- 淺層反極性電曝技術

圖 3.7 服務項目專區
圖3.8 出版品專區
3.3.2 聯盟技術研發成果

本聯盟第2年計畫自2017年2月1日至2017年2月28日協助聯盟會員的具體研發成果有：(1) 複合式PM2.5收集設備; (2)半乾式靜電旋風採樣器與氣體及/或液體採樣方法; (3) 低臭氧空氣淨化機; (4)防止微粒負載效應，具有濕潤衝擊表面的慣性衝擊器; (5) 可防止採樣誤差的高效率靜電微粒液相採樣器; (6) 高效率的直立式酸鹼洗滌塔與臥式洗滌塔等，已獲得2項專利及申請3項專利，並已發表SCI論文3篇。專利清單如下：

a2: 半乾式靜電旋風採樣器與氣體及/或液體採樣方法，中華民國專利(I551851號，2016.10.1-2035.06.17)及中國發明專利申請中(2015.06.18)。

a3: Semi-dry type electrostatic cyclone sampler and method for sampling gas and/or water sample，USA patent granted (2017.04, application number 14/831,574).

a4: 可防止採樣誤差的高效率靜電微粒液相採樣器，中華民國及大陸發明專利申請中(2017.09)。

a5: 防止微粒負載效應，具有濕潤衝擊表面的慣性衝擊器/INERTIAL IMPACTOR WITH A WETTED IMPACTION PLATE TO PREVENT PARTICLE LOADING EFFECT，中華民國、美國及大陸發明專利申請中(2017.08)。

SCI論文清單如下：

b1. Thi-Cuc Le and Chuen-Jinn Tsai, 2017, Novel nonbouncing PM2.5 impactor modified from well impactor ninety-six, Aerosol Science and Technology (published on-line).

b3. Duy-Dat Nguyen, Ching-Lan Tsai, Yuan-Cheng Hsu, Yuan-Wu Chen, Ying-Ming Weng and Moo Been Chang, 2017, PCDD/Fs and dl-PCBs concentrations in water samples of Taiwan, Chemosphere (published on-line).

各項研發成果說明如下：

(1)複合式PM2.5收集設備

本研究開發混合靜電及過濾PM2.5控制設備，技轉至小松環保公司，可提供該公司在濾網相關產品更多的發展空間。傳統濾網在處理次微米微粒時會因微粒與濾網間的作用力不足導致微粒去除效率過低的現象，同時濾網的微粒負荷快速累積會造成濾材更換頻率增加進而增加了操作成本。本開發案之混合靜電及過濾PM2.5控制設備同時具備高微粒去除效率，低成本，可長期操作及使用壽命長之特性，可大幅提升小松環保公司在國內外空污控制設備上的競爭能力。此新穎的靜電及過濾複合式PM2.5控制設備，結合了低壓損的ESP及中效率濾網而構成。在黏著性微粒的工業排氣或餐廳油煙的控制應用時，ESP的放電極為前端裝有能夠阻撓飛速微粒的電極，而收集電極為接地不銹鋼網構成。放電電極前端裝有篩選功能的PP薄膜，PP薄膜的功能為避免廢氣中的黏性物質附著於放電極極上，導致放電極效率降低。PP薄膜的厚度為45°角的PP薄膜，長度為21cm，寬度為2cm；鋸齒狀放電極離隔板1cm，長度為21cm；放電極末端的接地之不銹鋼網與放電極相距0.5~1.5cm，長度為15cm，寬度為17cm，不銹鋼網為304不銹鋼網，底邊寬度為2mm。
而定，網目規格與第一階不銹鋼網相同；若中效率濾材為摺式的濾材，則不銹鋼網需依摺式濾材的形狀作成間隔網的形式。設計一為本研究的主體，圖 3.9 (3)、(4) 所示的設計二的目的是作為收集效率的比較用，與設計一不同的地方為設計二使用一階充電器取代電極-不銹鋼網的結構，一階充電器收集板間的間隔為 5 cm，長度為 5 cm，高度為 15 cm，收集板與電極的間距為 2.5 cm。圖 3.10 為複合式 PM_{2.5} 收集設備先期技術授權合約。

設計一
(A) 放電電極擋板
(B) 靜電 -7 至 -20 kV 高壓電的鋁化合物放電電極
(C) 擾動不銹鋼網
(D) 靜電 -5 至 -10 kV 高電壓之不銹鋼網
(E) 纖維過濾器
(F) 擾動之不銹鋼網

設計二
(A) 一階靜電收集板
(B) 放電電極擋板
(C) 靜電 -7 至 -20 kV 高壓電的鋁化合物放電電極
(D) 靜電 -5 至 -10 kV 高電壓之不銹鋼網
(E) 纖維過濾器
(F) 擾動之不銹鋼網

圖 3.9 本技術的靜電及過濾複合式 PM_{2.5} 控制設備。設計一的示意圖(1)及上視圖(2)，及設計二的示意圖(3)及上視圖(4)。
產學合作研究計畫先進技術轉移成效評估合約書

計畫評估機關：國立交通大學
計畫主持人：黃宏志
計畫合作企業：小林環保科技股份有限公司

『產學合作計畫－複合式PM2.5收集設備的開發研究』

先期技術轉移進展報告

51

產學合作研究計畫先進技術轉移成效評估合約書

計畫執行機構：國立交通大學
計畫總統者：黃宏志
計畫合作企業：小林環保科技股份有限公司

『產學合作計畫－複合式PM2.5收集設備的開發研究』

先期技術轉移進展報告

51
第十一條 合約終止處理
一、本合約於訂約後，若乙方之行為或其業務造成甲方喪失或損失由本合約所生之收益或除損失前設定之外，合約應予終止。
二、若因甲方之違約致乙方違約者，合約應予終止。

第十二條 合約修改
一、本合約之修改，需以書面通知之書面通知生效。
二、本合約經甲乙雙方同意之書面通知後，始得生效。

第十三條 合約終止
一、本合約終止後，甲乙雙方依約辦理本合約之清算，並應自本合約終止日起，依約清算本合約之餘債。
複合式 PM2.5 收集設備先期技術授權合約
(2)半乾式靜電旋風採樣器(SDEP, semi-dry type electrostatic cyclone sampler) 與氣體及/或水樣採樣方法

本聯盟協助會員廠商志尚儀器股份有限公司研發一新型 PM₂.₅ 微粒採樣分析方法，且已獲得中華民國專利(半乾式靜電旋風採樣器與氣體及/或水樣採樣方法, 發明專利 I551851 號, 2016.10.1-2035.06.17)及美國專利領證中(Semi-dry type electrostatic cyclone sampler and method for sampling gas and/or water sample, USA patent granted, 2017.04, application number 14/831,574)。圖3.12為專利證書。傳統的 PM₂.₅ 成份監測為手動採樣，只能顯示日平均濃度，無法有效掌握污染物逐時變化，因此若有逐時的監測數據對於 PM₂.₅ 污染源的解析與管控十分有助益。目前市面上的無機水溶性離子的自動監測儀器有以微粒-液體收集器 PILS (particle-into-liquid sampler)及蒸氣噴射-氣膠收集器 SJAC (steam jet aerosol collector)製成的 MAGRA 或 AIM 系統等儀器均需進口，且價格十分昂貴，每部在 800 萬至 1200 萬元之多。濕式靜電集塵器(Wet Electrostatic Precipitator, WEP)為收集微粒最有效的設備之一，且定時的洗壁水可解決傳統乾式靜電集塵器(Electrostatic Precipitator, EP)所產生的問題。

本研究擬參考 WEP 的概念，開發一低臭氧、高收集效率的半乾式靜電微粒收集器(SDEP, semi-dry electrostatic precipitator)。SDEP 的示意圖如圖3.11所示。SDEP 主要的運作模式為採樣過程中保持內部乾燥狀態，可大幅降低因電暈放電產生的異常生成物(artifact)溶入水中，影響實際採樣濃度，待萃取時關閉高壓電並沿壁面切線方向注水萃取水樣。本聯盟蔡春進教授與志尚儀器股份有限公司取得此項發明專利，名稱為「半乾式靜電旋風採樣器與氣體及/或水樣採樣方法」，中華民國專利證書(證號 I551851)如圖3.12所示。志尚儀器股份有限公司後續將 SDEP 與先前蔡教授研發的濕式平板氣體-微粒分離器(Parallel-Plate Wet Denuder, PPWD)結合成一套大氣氣體及 PM₂.₅ 微粒分析監測系統，此氣體收集設備亦獲得專利並且技轉給志尚儀器公司，並將此系統向大陸及亞洲地區推廣市場。

![SDEP示意图](image_url)

圖 3.11 SDEP(a)示意圖(b)外觀(c)氣膠入口處的剖面圖
(3)低臭氧空氣清淨機

本聯盟協助會員生原家電股份有限公司研發一全新的空氣靜電清淨機，已獲中華民國發明專利（低臭氧空氣除塵空氣清淨機，發明專利第1563228號，2016.12.21-2035.04.26），並已另外提出中華民國（105.08.02，申請案號為105124439）及大陸（105.08.05，申請案號為20161063881.9）的專利申請，中華民國專利已完成審查正在答辯中。普通的靜電除塵機常見的問題在於提高除塵效率的過程容易伴隨臭氧的產生，而若臭氧濃度過高，反對人體有害。有鑑於此，本發明之主要目的在於提供一種能兼具高除塵效率與低臭氧特性的空氣靜電清淨機。

本發明的空氣靜電清淨機構造如圖3.13所示，示意圖如圖3.14所示，包括一外管、一內管，若干放電電極及至少一收集電極。外管是由導電材料製成，且外管具有一進氣端、一排氣端、一高壓放電區及一收集區，高壓放電區及收集區位於進氣端與排氣端之間，且高壓放電區較收集區更鄰近進氣端。內管由絕緣材料製成，且內管與外管同心並位於高壓放電區內，外管與內管之間定義一可供流體在軸向上通過的第一流道。放電電極由碳纖維管構成，放電電極是間隔排列地設於內管外表面並朝外管徑向延伸，且該等放電電極位於第一流道內。收集電極設於收集區內且位於該等放電電極的下風處。因本發明使用直徑只有7-8微米的碳纖維管作為放電電極，空氣中的微粒在通過高壓放電區時，能在較低的工作電壓下有效帶電，高壓放電區也較不易干涉收集區的電場，因此收集效率可提高，並可避免漏電問題，實現兼顧高除塵效率與低臭氧產生的功效。
本聯盟已完成此空氣清淨機的性能測試。實驗測試系統圖如圖 3.15 所示，實驗微粒來源為艾草燃燒產生的微粒，用於量測 PM2.5 微粒的去除效率、臭氧濃度以及 CADR(清淨空氣輸出率, clean air delivery rate)值。CADR 為適用坪數與每小時產生的清淨空氣量，依灰塵、花粉和煙霧等三種常見的室內空氣污染物分級，CADR 值越高，空氣清淨機越好。
PM$_{2.5}$ 去除效率測試結果如表 3.2 所示，臭氧濃度值測試結果如表 3.3 所示，CADR 值測試結果如表 3.4 所示。本實驗結果顯示清淨機對於 PM$_{2.5}$ 的去除率可達 96~98% 之間，CADR 值約在 29.8 m3/hr 左右；臭氧在處理後的平均濃度約 5.25 ppb，與背景臭氧濃度 1.50 ppb 相差不多，且遠低於我國室內空氣品質管理法訂定的室內臭氧濃度標準：八小時平均濃度不可超過 0.06 ppm。以上的實驗結果顯示本發明的清淨機的效果比市售清淨機效果優良，具有很大的市場潛力。

表 3.2 PM$_{2.5}$ 去除效率測試結果

<table>
<thead>
<tr>
<th>上游濃度 (mg/m3)</th>
<th>下游濃度 (mg/m3)</th>
<th>去除效率 (η)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.27</td>
<td>0.162</td>
<td>0.978</td>
</tr>
<tr>
<td>7.05</td>
<td>0.182</td>
<td>0.968</td>
</tr>
<tr>
<td>5.65</td>
<td>0.182</td>
<td>0.971</td>
</tr>
<tr>
<td>6.11</td>
<td>0.200</td>
<td>0.967</td>
</tr>
<tr>
<td>7.38</td>
<td>0.213</td>
<td>0.971</td>
</tr>
</tbody>
</table>

表 3.3 臭氧濃度值測試結果

<table>
<thead>
<tr>
<th>背景值</th>
<th>檢測</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>5.3</td>
</tr>
<tr>
<td>1.8</td>
<td>5.6</td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td>1.4</td>
<td>5.5</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>4.8</td>
</tr>
<tr>
<td>1.9</td>
<td>4.7</td>
</tr>
<tr>
<td>1.4</td>
<td>5.7</td>
</tr>
<tr>
<td>1.5</td>
<td>5.5</td>
</tr>
<tr>
<td>average</td>
<td>5.25</td>
</tr>
</tbody>
</table>

表 3.4 CADR 值測試結果

<table>
<thead>
<tr>
<th></th>
<th>CADR(ft3/min)</th>
<th>CADR(m3/min)</th>
<th>CADR(m3/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>一階</td>
<td>15.036</td>
<td>0.426</td>
<td>25.56</td>
</tr>
<tr>
<td>二階</td>
<td>17.535</td>
<td>0.497</td>
<td>29.80</td>
</tr>
</tbody>
</table>

(4)防止微粒負載效應，具有潤溼衝擊表面的慣性衝擊器

微粒衝擊器 (particle impactor) 係一種習知的微粒收集裝置，當氣流通過噴嘴後向下衝擊衝擊板；
因氣體無法貫穿衝擊板而使氣流做一個 90 度的轉彎，因此大於特定氣動粒徑(或稱截取粒徑)的微粒，無法隨著氣流流線移動則被衝擊板所收集；反之，小於特定氣動粒徑的微粒，則會隨著氣流流線離開衝擊面至下游的微粒採樣裝置或微粒監測設備，然而隨著採樣時間增加，在噴嘴下方的衝擊板上會逐漸形成微粒堆積(particle mound or particle deposit)，使後續所收集微粒撞擊於先前所累積的微粒而非衝擊面，而可能使小於特定氣動粒徑的微粒被收集，導致衝擊器的截取直徑下降，使衝擊器下游的微粒採樣或監測濃度被低估。

本發明的慣性衝擊器如圖 3.16 所示，它是一個具有濕潤衝擊表面的慣性衝擊器，可防止微粒負載效應。結構由上殼體、衝擊部及下殼體組成。上殼體具有氣體入口及與其連接之圓形噴嘴。衝擊部具有衝擊井，衝擊井下部為衝擊表面。噴嘴正對於衝擊表面的中心上方設置。衝擊表面中心具有液體輸入口，透過連續性或間歇性導入液體形成濕潤衝擊表面並去除微粒堆積，同時液體由衝擊表面上的液體排出路徑排出，下殼體具有氣體出口通道可連接至微粒採樣或監測裝置。

圖 3.16 本發明的慣性衝擊器構造
(5)可防止採樣誤差的高效率靜電微粒液相採樣器

大氣中 PM$_{2.5}$ 的質量及化學成份會隨著氣象及污染源的變化而產生變動，以往 PM$_{2.5}$ 的成分監測是以手動採樣分析，其通常只能顯示日平均濃度，無法有效掌握 PM$_{2.5}$ 化學成分的逐時變化，而現有的自動監測儀器包括微粒-液體收集器 PILS (particle-into-liquid sampler)、以及由蒸氣噴射-氣膠收集器 SJAC (steam jet aerosol collector) 製成的氣膠及氣體監測系統 MAGRA、大氣離子監測系統 AIM 及在線式氣體與氣膠監測儀 IGAC 等儀器，但這些儀器因高溫蒸氣而使得前驅氣體(NH$_3$、SO$_2$) 與水溶性離子(Na$^+$、NH$_4^+$、Cl$^-$、NO$_3^-$、SO$_4^{2-}$) 測值低估。

本發明為”可防止採樣誤差的高效率靜電微粒液相採樣器”，如圖 3.17 所示，是一種高效率靜電微粒液相採樣器。本發明已申請中華民國及大陸專利。該採樣器採用乾式收集、濕式萃取的採樣方式以避免採樣誤差。乾式收集分為兩階收集微粒，第一階的放電電極由碳纖維管構成，目的在於使微粒充電，第二階利用高電壓圓桿-接地圓柱間的電場，使帶電微粒以靜電力收著於接地的圓柱壁面。濕式萃取時，利用間歇性開啓與關閉的電磁閥，將去離子水以脈衝方式注入採樣器沖洗圓柱壁面上收集的氣膠成為液體樣本，並進行後續氣膠液體樣本的手動或自動的化學分析。

![第1圖](image)

圖 3.17 可防止採樣誤差的高效率靜電微粒液相採樣器
高效率的直立式酸鹼洗滌塔與臥式洗滌塔

本聯盟在第一年的計畫中在力晶科技股份有限公司建置一套直立式洗滌塔，其內裝設蜂巣狀濾材，該濾材是本聯盟多年的研究成果，將其應用在酸鹼洗滌塔內並已完成 HF 及各種酸氣的洗滌塔工程驗收。在半導體廠的模場測試結果顯示去除效率均比填充洗滌塔高很多，合理的氣體滯留時間下 (0.5 sec) 去除效率可達 99% 以上，壓損也只有 0.45 cm H₂O。表 3.5 為去年(2016) 8 月至今年 8 月持續檢測各項數據的數值，可看出絕大多數的處理效率都在 97%、98% 以上，且經過一整年以來，處理效率幾乎不會降低，且蜂巣狀濾材不會被微粒阻塞。

表 3.5 力晶科技股份有限公司高效率酸鹼洗滌塔歷月氣體檢測數據 (2016.08-2017.08)

<table>
<thead>
<tr>
<th>檢測日期</th>
<th>HF</th>
<th>CH₂COOH</th>
<th>HCl</th>
<th>HNO₂</th>
<th>HNO₃</th>
<th>H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016年8月11日</td>
<td>81713.7</td>
<td>21388.12</td>
<td>5108.64</td>
<td>1850.07</td>
<td>4939.33</td>
<td>442.7</td>
</tr>
<tr>
<td>1634.48</td>
<td>798.73</td>
<td>112.72</td>
<td>38.64</td>
<td>103.01</td>
<td>13.77</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>96%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>2016年9月12日</td>
<td>172093.6</td>
<td>52600.3</td>
<td>2699.9</td>
<td>411.8</td>
<td>2341.4</td>
<td>414.6</td>
</tr>
<tr>
<td>5303.3</td>
<td>2606.0</td>
<td>105.8</td>
<td>17.2</td>
<td>52.8</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>97%</td>
<td>95%</td>
<td>96%</td>
<td>96%</td>
<td>98%</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>2016年10月11日</td>
<td>118926.3</td>
<td>52406.6</td>
<td>12669.2</td>
<td>3911.9</td>
<td>10324.9</td>
<td>790.1</td>
</tr>
<tr>
<td>2307.0</td>
<td>1248.1</td>
<td>260.1</td>
<td>111.7</td>
<td>149.5</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>97%</td>
<td>99%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>2016年12月13日</td>
<td>101000.5</td>
<td>8285.4</td>
<td>652.5</td>
<td>143.0</td>
<td>507.6</td>
<td>147.6</td>
</tr>
<tr>
<td>2258.3</td>
<td>313.3</td>
<td>15.6</td>
<td>4.1</td>
<td>8.6</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>96%</td>
<td>98%</td>
<td>97%</td>
<td>98%</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>2017年3月13日</td>
<td>180865.0</td>
<td>12552.1</td>
<td>2540.1</td>
<td>1792.0</td>
<td>4628.5</td>
<td>298.8</td>
</tr>
<tr>
<td>4857.4</td>
<td>597.6</td>
<td>53.0</td>
<td>77.0</td>
<td>77.6</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>97%</td>
<td>95%</td>
<td>98%</td>
<td>96%</td>
<td>98%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>2017年6月15日</td>
<td>142711.5</td>
<td>62887.9</td>
<td>15203.0</td>
<td>4694.2</td>
<td>12389.8</td>
<td>948.1</td>
</tr>
<tr>
<td>4617.6</td>
<td>1274</td>
<td>263.9</td>
<td>131.3</td>
<td>166.4</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>97%</td>
<td>98%</td>
<td>98%</td>
<td>97%</td>
<td>99%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>2017年8月15日</td>
<td>128020.9</td>
<td>72582.3</td>
<td>10854.3</td>
<td>3582.9</td>
<td>8235.7</td>
<td>825.7</td>
</tr>
<tr>
<td>2185.1</td>
<td>1854.5</td>
<td>163.9</td>
<td>132.5</td>
<td>257</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>97%</td>
<td>98%</td>
<td>96%</td>
<td>97%</td>
<td>96%</td>
<td></td>
</tr>
</tbody>
</table>

許多廠商反應自家工廠採用臥式洗滌塔，而非傳統的直立式洗滌塔。臥式洗滌塔因為採橫臥式，故塔身較低，可放置於建築物頂樓或室內、高度受限之區域，且設備功能彈性大，可為單段或多段式藥液吸收層設計，去除效率佳，操作維護容易，所以本聯盟在今年度決定將高效率直立式酸鹼洗滌塔改良為高效率臥式洗滌塔。但直立式轉變為臥式的整體流場都會改變，處理效率也會改變。另外將蜂巣結構放入臥式洗滌塔中，洗滌塔內氣流與氣流的流場也與直立式不同，所以在濾布的結構、管線的配接、槽體的構造都要重新設計，因此要能研發出可以維持高效率又同時具有臥式優點的洗滌塔。

經過本聯盟團隊的努力，已成功改良原來的直立式洗滌塔(圖 3.18)成為臥式洗滌塔(圖 3.19)，將原本圓柱形的蜂巢式結構改為方型的蜂巢式結構，廢氣以水平方式進入洗滌塔填充段，洗滌液也是以同方向進入填充段並同時流動廢氣，藉由氣液兩相接觸之吸收程序，使污染物得以被吸收，將氣體中的溶質吸收送至液體內部，再將清潔氣體與被污染的液體分離達到去除的效果。

本聯盟已將此技術轉讓給普路托科技公司，今年該公司在本聯盟會員伊特笙流體工程有限公司之支持下，已在某半導體公司完成臥式洗滌塔的組裝並正在測試中(100 萬元報價單如圖 3.20，已完工並由學校開收據給伊特笙公司，如 p.78 附錄所示)，預期可大幅改善伊特笙流體工程有限公司的相關廢氣問題。
圖 3.18 高效率直立式酸鹼洗滌塔

圖 3.19 高效率臥式洗滌塔
<table>
<thead>
<tr>
<th>委託單位</th>
<th>伊特笙流體工程有限公司</th>
</tr>
</thead>
<tbody>
<tr>
<td>聯絡地址</td>
<td>台北市萬華區西寧南路38號7樓之33</td>
</tr>
<tr>
<td>報價聯絡人</td>
<td>招華政教授</td>
</tr>
<tr>
<td>委託聯絡人</td>
<td>朱先生</td>
</tr>
<tr>
<td>聯絡電話</td>
<td>03-5712121#55511</td>
</tr>
<tr>
<td>總合編號</td>
<td>80266683</td>
</tr>
<tr>
<td>傳真號碼</td>
<td>03-5727835</td>
</tr>
<tr>
<td>聯絡電話</td>
<td>傳真號碼</td>
</tr>
<tr>
<td>報價日期</td>
<td>106年06月05日</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項次</th>
<th>品名規格</th>
<th>數量</th>
<th>總價</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>用於廢氣前處理的高效率臥式洗滌塔模擬施工及測試</td>
<td>1</td>
<td>1000000</td>
</tr>
</tbody>
</table>

合計：新台幣一百萬元整（不含營業稅）1000000

註：
1. 報價有效期期限為30日內，本報價無規格成果達成，不涉及權益歸屬。
2. 因本技術服務業所生之任何損害，國立交通大學僅負非常規或重大過失損害賠償責任，並依本報價書所載有關之規格為報價上限。
3. 付款條件：簽約後即付款。
4. 交貨期限：簽約後60日內（以實際工作天計算）。
5. 交貨地點：伊特笙流體工程有限公司

貴公司如同意以上報價資料，請貴公司及負責人在此簽名蓋章同意。

中華民國106年6月5日
聯盟推廣活動及執行成果說明：

為了推廣核心技術及吸引更多會員加入，聖盃在第二年計畫(2017年2月1日至2017年2月24日)共舉辦了10場技術研習會及1場會員大會，推廣活動的內容如下：

(1) 本聯盟於2017年2月24日在交通大學環境工程研究所環工館1樓演講廳，舉辦「美國橡樹嶺國家實驗研究院之環境氣膠研究」，本次邀請到的演講為美國能源部設立的橡樹嶺國家實驗室(Oak Ridge National Laboratory, ORNL)的傑出研究員鄭盟東博士來分享一些在ORNL的研進成果，如飛機及固定污染源排放測量，及大氣及污染源金屬元素的雷射誘發擊穿光譜(Laser-induced breakdown spectroscopy, LIBS)的自動監測技術等。議程如圖3.21所示。本次研習共有31人報名參加(含政府機構0人，財團法人2人，會員7人，非會員0人，學術單位22人)。

鄭盟東博士為美國在能源及環境技術的重要研究部門，其中環境科學部門(ESD, Environmental Sciences Division)在大氣監測技術，大氣物理化學，大氣化學研究十分傑出。目前為全球能源-環境模擬及分析計畫(GEESA)的科學主管。他是在氣膠的技術及採樣技術，及大氣化學傳輸及轉化模擬等具有十分豐富的研究經驗，他與ORNL的研究人員建構出一些在ORNL的研進成果，如飛機及固定污染源排放測量，及大氣及污染源金屬元素的雷射誘發擊穿光譜技術應用及發展等。Seasonal aerosol and technology is a yearlong study of atmospheric pollutants. It requires knowledge from physics, chemistry, biology, and engineering, for example. Aerosols are small or liquid particles suspended in the air with the size ranging from sub-nanometers of molecular clusters to tens of micrometers of ambient air. Aerosol particles are ubiquitous and can have profound impacts on the environment because of their small size and chemical properties. Commonly known aerosol aerosols are those with sizes greater than 0.1 micrometers.

美國橡樹嶺國家實驗研究院之環境氣膠研習會

Environmental Aerosol Research at Oak Ridge National Laboratory (ORNL)

鄭盟東為美國橡樹嶺國家實驗研究院的氣膠專家，他在氣膠的技術及採樣技術，及大氣化學傳輸及轉化模擬等具有十分豐富的研究經驗，他與ORNL的研究人員建構出一些在ORNL的研進成果，如飛機及固定污染源排放測量，及大氣及污染源金屬元素的雷射誘發擊穿光譜技術應用及發展等。Seasonal aerosol and technology is a yearlong study of atmospheric pollutants. It requires knowledge from physics, chemistry, biology, and engineering, for example. Aerosols are small or liquid particles suspended in the air with the size ranging from sub-nanometers of molecular clusters to tens of micrometers of ambient air. Aerosol particles are ubiquitous and can have profound impacts on the environment because of their small size and chemical properties. Commonly known aerosol aerosols are those with sizes greater than 0.1 micrometers.
圖 3.22 美國橡樹嶺國家實驗研究院之環境氣膠研習會活動照片
(2) 本聯盟於 106 年 4 月 11 日在國立交通大學環境工程研究所環工館 1 樓演講廳，舉辦「PM_{2.5} 及金屬檢測研習會」，邀請到聯盟顧問陳仁焜博士、計畫主持人蔡春進教授及利得儀器李居昌專案經理與科安企業王惟申經理，分別介紹「大氣 PM_{2.5} 的檢測及控制」、「空氣微塵及病人肺積水內金屬元素分析的挑戰」、「連續重金屬即時監測系統簡介與應用實例」、「PM_{2.5} 採樣與前處理技術分享」。

本會議的議程如圖 3.23 所示，本會議報名方式可由”PM_{2.5} 及奈米微粒監測與技術控制聯盟網頁”線上報名，報名人數為 101 人(含政府機構 13 人、財團法人 5 人、會員 28 人、非會員 36 人、學術單位 19 人)。

中餐時間會同時進行儀器展示，由志尚儀器公司、利得儀器公司、科安企業公司負責展示，主展示儀器為 PM_{2.5} 採樣及檢測儀器、微波消化儀器、粒徑分佈測量、離子及金屬成份自動監測…等。

研習會的相關文件與簡報已上傳至 PM_{2.5} 及奈米微粒監測與控制技術聯盟網頁提供會員註冊下載閱讀，讓不克參與研習的會員也可以獲得相關資訊，研習的活動照片如圖 3.24 所示，其他活動花絮以及相關文件也已上傳在網頁上。

図 3.23 PM_{2.5} 及金屬檢測研習會議程
活動現場-儀器展示

活動現場-儀器展示

活動現場-演講者演講

活動現場-演講者演講

活動現場-演講者演講

活動現場-演講者演講

圖3. 24 PM2.5及金屬檢測研習會活動照片
(3) 本聯盟於106年7月14日在台中工業區污水處理廠2樓會議室舉辦「工業VOCs及PM2.5排放控制技術研習會」，邀請到計畫主持人蔡春進教授及小松環保股份有限公司吳承翰先生與傑智環境科技股份有限公司簡弘民博士，分別介紹「PM2.5及奈米微粒監測與技術控制技術聯盟的產業服務成果」、「氣體集塵及餐飲油煙控制技術」、「連續重金屬即時監測系統簡介及應用實例」。本會議的議程如圖3.25所示。本會議報名方式可由「PM2.5及奈米微粒監測與技術控制技術聯盟網頁」線上報名，報名人數為54人（含政府機構8人、財團法人0人、會員5人、非會員26人、學術單位15人）。

該天研討會重點主要著重在聯盟組織及近期工作成果介紹、PM2.5採樣及監測技術、酸味的監測與控制、及靜電集塵技術、設計與操作濾袋屋時的注意事項、餐飲業油煙異味的控制技術、最佳可行控制技術(BACT)來解決VOCs排放問題。

研習會的相關文件與簡報皆已上傳至PM2.5及奈米微粒監測與技術控制技術聯盟網頁供會員下載閱讀，讓不参加会议的會員也可以獲得相關資訊，研習的活動照片如圖3.26所示，其他活動花絮以及相關文件皆已上傳至網頁。

図3.25 工業VOCs及PM2.5排放控制技術研習會
活動現場 - 演講者演講
活動現場 - Q&A 時間

圖 3.26 工業 VOCs 及 PM2.5 排放控制技術研習會活動照片
本聯盟在 2017 年 7 月 26 日在國立交通大學環境工程研究所環工館 2 樓 205 室舉辦「PM_{2.5} 的過濾技術研習會」，邀請到計畫主持人蔡春進教授及美國維吉尼亞聯邦大學機械與核能工程系助理教授陳聖傑博士來分享心得，各演講者分別介紹「PM_{2.5} 及奈米微粒監測與技術控制技術聯盟的進展」、「控制室內外 PM_{2.5} 的過濾技術」。本會議的議程如圖 3.27 所示，本會議報名方式可由「PM_{2.5} 及奈米微粒監測與技術控制技術聯盟網頁」線上報名，報名人數為 26 人(含政府機構 0 人、財團法人 0 人、會員 3 人、非會員 2 人、學術單位 21 人)。

該天研討會重點前半段主要著重在聯盟組織及近期工作成果介紹，後半段由美國維吉尼亞聯邦大學機械與核能工程系助理教授陳聖傑博士講解有關包括城市奈米顆粒取樣和分析，奈米粉末工作製造場所及許多其他環境；以 3-D 數值模擬流場和氣體污染物分散在一個真正的潔淨室和顆粒在臨界孔和軸流式旋流器的傳輸情況；氣溶膠採樣和控制裝置的設計和校準等。

研習會的相關文件與簡報皆已上傳至 PM_{2.5} 及奈米微粒監測與控制技術聯盟網頁提供會員下載閱讀，讓不克參與研習的會員也可以獲得相關資訊。研習的活動照片如圖 3.28 所示，其他活動花絮以及相關文件也已上傳至網頁上。

PM_{2.5} 及奈米微粒監測與技術控制技術聯盟

PM_{2.5} 的過濾技術研習會

日 期：2017 年 7 月 26 日(三)
時 間：13:30-15:30
地 點：國立交通大學環境工程研究所環工館 2 樓 205 室(新竹市大學路 1001 號)
指導單位：科技部
主辦單位：PM_{2.5}及奈米微粒監測與技術控制技術聯盟
協辦單位：交通大學環境工程研究所

參加對象：PM_{2.5}及奈米微粒監測與技術控制技術聯盟成員及廠商，受邀政府機關、廠商，
或有關單位加入相關的廠商及個人。
會 費：免費(侑事先報名，限定30名，額滿即止)。
報名方式：網上報名，額滿即止，請於 07/24 前完成報名。
聯絡窗口：許維靜 E-mail: journex1994@nctu.edu.tw
03-5712121 ext. 55548 / 0668-225607

<table>
<thead>
<tr>
<th>時 間</th>
<th>內 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:10-13:30</td>
<td>報 到</td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>PM_{2.5}及奈米微粒監測與技術控制技術聯盟的進展 Progress update of the research consortium for the monitoring and control of PM_{2.5} and nanoparticles 陳聖傑博士 (國立交通大學環境工程研究所講座教授)</td>
</tr>
<tr>
<td>13:45-15:15</td>
<td>控制室內外 PM_{2.5}的過濾技術 Mitigation of outdoor and indoor PM_{2.5} by filtration technology 陳聖傑博士 (美國維吉尼亞聯邦大學機械與核能工程系助理教授)</td>
</tr>
<tr>
<td>15:10-15:30</td>
<td>綜合座談 Q & A</td>
</tr>
<tr>
<td>15:30</td>
<td>結會</td>
</tr>
</tbody>
</table>

圖 3.27 PM_{2.5} 的過濾技術研習會議程
圖 3.28 PM_{2.5}的過濾技術研習會活動照片
(5) 本联盟在 106 年 8 月 15 日在台积工业股份有限公司 B1 会议室舉辦「2017 聯盟會員大會」。
本聯盟的會員廠商已利用聯盟的技術製成 PM2.5 的監控設備，實際解決國內業者 PM2.5 及空氣污染
問題。本次的年度會員大會邀請的參加者除了聯盟共同主持人及企業會員外，還有顧問、立法委員
及研究單位人員，在會中介紹本聯盟的工作進展，並共同討論 PM2.5 與空氣污染的監測及治理產業
發展協會之成立事宜，並將聯盟現況及近期所發展技術及會員廠商以討論的方式進行交流，同時藉
由此會議讓其他參加的非會員廠商對於本聯盟所提供的技術服務內容及合作成果更加清楚，期望能
增加更多的聯盟會員。此次報名人數為 39 人 (含立法委員 2 人、財團法人 2 人、會員廠商 23 人、
學術單位 12 人)。大會的時程表如圖 3.29 所示。

會員大會的相關文件與簡報皆已上傳至 PM2.5 及奈米微粒監測與控制技術聯盟網頁提供會員下
載閱讀，讓不克參加研習的會員也可以獲得相關資訊。研習的活動照片如圖 3.30 所示，其他活動
花絮以及相關文件也已上傳至網頁。

PM2.5 及奈米微粒監測與控制技術聯盟

2017 聯盟會員大會

細懸浮微粒 (PM2.5) 對人體健康及能見度有不良的影響，我國為改善 PM2.5 空氣品質，必需
製作好產生性 PM2.5 及前體氣態污染物的監測及控制工作。國立交通大學環境工程研究所科技
部支持下，於 2016 年 2 月起成立了 “PM2.5 及奈米微粒監測與控制技術聯盟”，旨在結合
PM2.5 的儀器商及空污設備商，協助政府環境單位及國內業者解決 PM2.5 及奈米微粒粒徑的問
題。第一年(2016.02-2017.01)加入聯盟的企業僅有 14 家，第二年至今(2016.02-2017.06)會員
數更增加至 29 家。顯示本聯盟的重要性。會員廠商已利用聯盟的技術製
成 PM2.5 的監控設備，實際解決國內業者 PM2.5 及空氣污染問題。我們竭誠歡迎各企業廠商加
入本聯盟成為會員，聯盟的網址為 http://pm25.nctu.edu.tw/main.php。本次的年度會員大會邀請
參加者有聯盟共同主持人及顧問、企業會員、政府及研究單位人員，會中將介紹本聯盟的工作
進展，並共同討論 PM2.5 與空氣污染的監測及治理產業發展協會之成立事宜。

日期：2017 年 8 月 15 日(二)
時段：14:30-17:30
地點：台積工業股份有限公司 B1 会议室(台北市內湖區內湖路一段 250 號 B1 会议室)
指導單位：科技部
主辦單位：國立交通大學 “PM2.5 及奈米微粒監測與控制技術聯盟”
協辦單位：交通大學環境工程研究所、台積工業股份有限公司
參加對象：PM2.5 及奈米微粒監測與控制技術聯盟會員廠商、共同主持人、聯盟顧問、邀請的
人員…等
費 用：免費
聯絡窗口：許維静 E-mail: joannexu@nctu.edu.tw
 03-5712121 ext. 55548；0988-223687

活動時程表

<table>
<thead>
<tr>
<th>時間</th>
<th>內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30-15:00</td>
<td>聯絡時間</td>
</tr>
<tr>
<td>參觀台積工業股份有限公司</td>
<td></td>
</tr>
<tr>
<td>15:00-16:00</td>
<td>“PM2.5 及奈米微粒監測與控制技術聯盟” 速度報告</td>
</tr>
<tr>
<td>16:00-17:30</td>
<td>討論時間</td>
</tr>
<tr>
<td>成立 PM2.5 與空氣污染的監測及治理產業發展協會的事宜</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td>餐敘</td>
</tr>
</tbody>
</table>

(台北市內湖區瑞光路 513 巷 22 弄 15 號)

圖 3.29 2017 聯盟會員大會活動時程表
活動現場-演講者報告
活動現場-討論過程
活動現場-討論過程
活動現場-討論過程
活動現場-討論過程
活動現場-會員合照

圖 3.30 2017 聯盟會員大會活動照片
4.1 聯盟成員清單

<table>
<thead>
<tr>
<th>編號</th>
<th>聯盟成員名稱</th>
<th>類別</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工業技術研究院</td>
<td>其他(法人會員)</td>
</tr>
<tr>
<td>2</td>
<td>普路托科技有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>3</td>
<td>志尚儀器股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>4</td>
<td>台軒工業股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>5</td>
<td>台灣檢驗股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>6</td>
<td>生原家電股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>7</td>
<td>台灣賽默飛世爾科技股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>8</td>
<td>捷思環能有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>9</td>
<td>小松環保股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>10</td>
<td>緣川工程顧問股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>11</td>
<td>恆茂有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>12</td>
<td>香港商南德產品驗證顧問股份有限公司台灣分公司</td>
<td>廠商</td>
</tr>
<tr>
<td>13</td>
<td>弘準科技有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>14</td>
<td>吉能科技股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>15</td>
<td>科安企業股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>16</td>
<td>陸傑科技股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>17</td>
<td>利得儀器股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>18</td>
<td>傑智環境科技股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>19</td>
<td>伊特笙流體工程有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>20</td>
<td>晃誼科技股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>21</td>
<td>宸昶企業有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>22</td>
<td>金石山工程顧問股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>23</td>
<td>億振科技股份有限公司(金牌)</td>
<td>廠商</td>
</tr>
<tr>
<td>24</td>
<td>儀普工程股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>25</td>
<td>台旭環境科技中心股份有限公司</td>
<td>廠商</td>
</tr>
<tr>
<td>26</td>
<td>密科博股份有限公司(銀牌)</td>
<td>廠商</td>
</tr>
<tr>
<td>27</td>
<td>大宇國際電器有限公司(愛博特)(銀牌)</td>
<td>廠商</td>
</tr>
<tr>
<td>28</td>
<td>大謙科技材料股份有限公司(銀牌)</td>
<td>廠商</td>
</tr>
<tr>
<td>29</td>
<td>建築造漆股份有限公司</td>
<td>廠商</td>
</tr>
</tbody>
</table>
4.2 聯盟成員契約書

科技部「PM2.5及基礎微觀監測與控制技術聯盟」會員合約書

本合約書雙方簽署後，即代表乙方向乙方確認同意內容，並對本合約書雙方之責任及義務

合約起始時間：自民國 105 年 05 月 02 日起，至 105 年 05 月 11 日止

甲方：國立交通大學

立約人：張懷中 校長

監盟召集人：李春雄 教授

統一編號：46804706
聯絡電話：03-5731880
地址：39010 新竹市大學路 1001 號

乙方（廠商名稱）：台灣統監科技（股）公司

立約人（負責人）：鍾思健

連絡人：林仲明

統一編號：23928067
聯絡電話：02-2299-3279
地址：新北市新莊區市府路213號

中華民國 105 年 05 月 11 日
<table>
<thead>
<tr>
<th>審查意見</th>
<th>回覆說明</th>
<th>備註</th>
</tr>
</thead>
</table>
| 聯盟可強化進行專利佈局，擴散成效。 | 本聯盟重視專利申請，並致力推廣專利技轉及技術發展，第二年計畫至10月31日止已獲得兩項專利與並申請三項專利，專利清單如下：
a1: 低臭氧靜電除塵空氣清淨機，中華民國發明專利（I563228號，2016.12.21-2035.04.26)，及中國發明專利申請中。（2015.04.27)中國發明專利申請—早期公開，已進入實審程序。
a2: 半乾式靜電旋風採樣器與氣體及/或水樣採樣方法，中華民國專利（I551851號，2016.10.1-2035.06.17)及中國發明專利申請中(2015.06.18)中國發明專利申請—早期公開，已進入實審程序。
a3: Semi-dry type electrostatic cyclone sampler and method for sampling gas and/or water sample, USA patent granted (2017.04, application number 14/831,574)。
a4: 可防止採樣誤差的高效率靜電微粒液相採樣器，中華民國及大陸發明專利申請中 (2017.09)。
a5: 防止微粒負載效應，具有濕潤衝擊表面的慣性衝擊器/INERTIAL IMPACTOR WITH A WETTED IMPACTION PLATE TO PREVENT PARTICLE LOADING EFFECT, 中華民國、美國及大陸發明專利申請中 (2017.08)。 | |
億振科技股份有限公司會員費 100,000 元收據

伊特笙流體工程有限公司技術服務費 1,000,000 元收據